Energy Storage in Bifunctional TiO 2 Composite Materials under UV and Visible Light

This paper provides an overview of recent studies on energy storage in bifunctional TiO 2 composite materials under UV and visible light. The working mechanism, property improvements and applications of these bifunctional TiO 2 composite systems are introduced, respectively. The latest results obtained in our laboratory, especially a new process for photoelectric conversion and energy storage in TiO 2 /Cu 2 O bilayer films under visible light, are also presented. Hopefully this review will stimulate more fundamental and applied research on this subject in the future.

[1]  Lisha Zhang,et al.  Preparation of Fenton reagent with H2O2 generated by solar light-illuminated nano-Cu2O/MWNTs composites , 2006 .

[2]  Tsutomu Miyasaka,et al.  The photocapacitor: An efficient self-charging capacitor for direct storage of solar energy , 2004 .

[3]  Michael Grätzel,et al.  Solar energy conversion by dye-sensitized photovoltaic cells. , 2005, Inorganic chemistry.

[4]  Prashant V Kamat,et al.  Photoinduced electron storage and surface plasmon modulation in Ag@TiO2 clusters. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[5]  Wojtek Wlodarski,et al.  Investigation of sol–gel prepared CeO2–TiO2 thin films for oxygen gas sensing , 2003 .

[6]  C. Sanchez,et al.  Extinction of photo-induced Ti3+ centres in titanium oxide gels and gel-based oxo-PHEMA hybrids , 2006 .

[7]  Andreas Poullikkas,et al.  Overview of current and future energy storage technologies for electric power applications , 2009 .

[8]  E. Wolf,et al.  Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. , 2004, Journal of the American Chemical Society.

[9]  T. He,et al.  Photochromism of WO3 colloids combined with TiO2 nanoparticles , 2002 .

[10]  D. Corrigan,et al.  Photoelectrochemistry of Nickel Hydroxide Thin Films , 1989 .

[11]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[12]  T. Tachikawa,et al.  Mechanistic Insight into the TiO2 Photocatalytic Reactions: Design of New Photocatalysts , 2007 .

[13]  P. Kamat Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion , 2007 .

[14]  X. Tao,et al.  Light energy storage and photoelectrochemical behavior of the titanate nanotube array/Ni(OH)2 electrode , 2009 .

[15]  Martin A. Green,et al.  Progress and outlook for high-efficiency crystalline silicon solar cells , 2001 .

[16]  A. Fujishima,et al.  Energy Storage of TiO2−WO3 Photocatalysis Systems in the Gas Phase , 2002 .

[17]  K. Kaneko,et al.  Rectification effect by a p-n junctioned oxide film , 1992 .

[18]  Chuncheng Chen,et al.  Efficient degradation of toxic organic pollutants with Ni2O3/TiO(2-x)Bx under visible irradiation. , 2004, Journal of the American Chemical Society.

[19]  A. Aberle Thin-film solar cells , 2009 .

[20]  Prashant V Kamat,et al.  Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. , 2005, Journal of the American Chemical Society.

[21]  Adrian Ilinca,et al.  Energy storage systems—Characteristics and comparisons , 2008 .

[22]  Paul B. Weisz,et al.  Basic Choices and Constraints on Long-Term Energy Supplies , 2004 .

[23]  T. Nomiyama,et al.  Photo-rechargeable battery with TiO2/carbon fiber electrodes prepared by laser deposition , 2000 .

[24]  T. Tatsuma,et al.  Optimization of energy storage TiO2–WO3 photocatalysts and further modification with phosphotungstic acid , 2004 .

[25]  Enric Bertran,et al.  Electrochromic behaviour of nickel oxide thin films deposited by thermal evaporation , 2001 .

[26]  M. Parsa Moghaddam,et al.  Electric energy storage systems in a market-based economy: Comparison of emerging and traditional technologies , 2009 .

[27]  T. Tatsuma,et al.  Energy storage TiO2-MoO3 photocatalysts , 2004 .

[28]  Zhiyu Jiang,et al.  Thermal effects on the measurement of photocurrent at anodic films on nickel electrodes , 2002 .

[29]  A. Kanaev,et al.  Kinetics of UV-induced darkening of titanium-oxide gels , 2005 .

[30]  Chuncheng Chen,et al.  Photoinduced Electron Storage in WO3/TiO2 Nanohybrid Material in the Presence of Oxygen and Postirradiated Reduction of Heavy Metal Ions , 2009 .

[31]  K. Chhor,et al.  Chemical activity of photoinduced Ti3+ centers in titanium oxide gels. , 2006, The journal of physical chemistry. B.

[32]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.

[33]  Johan Nijs,et al.  Advanced cost-effective crystalline silicon solar cell technologies , 2001 .

[34]  D. Santos,et al.  Optical storage in mixed Langmuir-Blodgett (LB) films of disperse Red-19 isophorone polyurethane and cadmium stearate , 1999 .

[35]  T. Shinohara,et al.  Investigations on SnO2–TiO2 composite photoelectrodes for corrosion protection , 2003 .

[36]  Volker Wittwer,et al.  Materials for solar energy conversion: An overview , 1998 .

[37]  M. Dresselhaus,et al.  Alternative energy technologies , 2001, Nature.

[38]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[39]  T. Tatsuma,et al.  Visible light-induced photocatalysts with reductive energy storage abilities , 2008 .

[40]  A. Fujishima,et al.  TiO2-Phosphotungstic Acid Photocatalysis Systems with an Energy Storage Ability , 2003 .

[41]  A. Fujishima,et al.  Bactericidal effect of an energy storage TiO2–WO3 photocatalyst in dark , 2003 .

[42]  Chien-Tsung Wang,et al.  Photo-chargeable titanium/vanadium oxide composites , 2008 .

[43]  Fu Honggang,et al.  The preparation and characterization of nanoparticle TiO2/Ti films and their photocatalytic activity , 2003 .

[44]  Masaru Kuno,et al.  Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. , 2007, Journal of the American Chemical Society.

[45]  M. Madou,et al.  Impedance Measurements and Photoeffects on Ni Electrodes , 1983 .

[46]  Clemens Bechinger,et al.  Photoelectrochromic windows and displays , 1996, Nature.

[47]  T. Tatsuma,et al.  Oxidative energy storage ability of a TiO2-Ni(OH)2 bilayer photocatalyst. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[48]  A. Fujishima,et al.  SrTiO 3 -WO 3 Photocatalysis Systems with an Energy Storage Ability , 2002 .

[49]  P. K. Nair,et al.  Chemically deposited copper oxide thin films: structural, optical and electrical characteristics , 1999 .

[50]  M. Ouyang,et al.  Visible-light Energy Storage by Ti3+ in TiO2/Cu2O Bilayer Film , 2009 .

[51]  Nick Serpone,et al.  Is the band gap of pristine TiO(2) narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? , 2006, The journal of physical chemistry. B.

[52]  A. Fujishima,et al.  TiO2−WO3 Photoelectrochemical Anticorrosion System with an Energy Storage Ability , 2001 .

[53]  P. Marteau,et al.  Light-induced charge separation and storage in titanium oxide gels. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  J. Baker New technology and possible advances in energy storage , 2008 .

[55]  Yibing Xie,et al.  Supercapacitor application of nickel oxide-titania nanocomposites , 2009 .

[56]  Peter Svedlindh,et al.  Electrochromic Ni Oxide Films studied by Magnetic Measurements , 1998 .

[57]  J. Bandara,et al.  Multi-electron storage of photoenergy using Cu2O–TiO2 thin film photocatalyst , 2008 .

[58]  Richard Eisenberg,et al.  Preface: overview of the forum on solar and renewable energy. , 2005, Inorganic chemistry.

[59]  A. Kanaev,et al.  Laser-induced absorption in titanium oxide based gels , 2003 .

[60]  Vaidyanathan Subramanian,et al.  Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. , 2006, Journal of the American Chemical Society.