Creep of phyllosilicates at the onset of plate tectonics

[1]  D. Bercovici,et al.  Mechanisms for the generation of plate tectonics by two-phase grain-damage and pinning , 2012 .

[2]  S. Misra,et al.  Mechanics of kink-bands during torsion deformation of muscovite aggregate , 2012 .

[3]  C. Tomé,et al.  Texture and elastic strains in hcp-iron plastically deformed up to 17.5 GPa and 600 K: experiment and model , 2012 .

[4]  W. Durham,et al.  Experimental constraints on the strength of the lithospheric mantle , 2010 .

[5]  G. Hirth,et al.  Deformation of antigorite serpentinite at high temperature and pressure , 2010 .

[6]  I. Katayama,et al.  Inhibition of subduction thrust earthquakes by low-temperature plastic flow in serpentine , 2010 .

[7]  Stefan Goedecker,et al.  ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..

[8]  Mark L. Rivers,et al.  The large-volume high-pressure facility at GSECARS: A 'Swiss-army-knife' approach to synchrotron-based experimental studies , 2009 .

[9]  G. Fecher,et al.  Exotic magnetism in the alkali sesquioxides Rb4O6 and Cs4O6 , 2009, 0904.4338.

[10]  T. Hirose,et al.  Dehydration reactions and micro/nanostructures in experimentally-deformed serpentinites , 2009 .

[11]  H. Wenk,et al.  Modeling analysis of the influence of plasticity on high pressure deformation of hcp-Co , 2009 .

[12]  P. Tackley,et al.  Planforms of self‐consistently generated plates in 3D spherical geometry , 2008 .

[13]  S. Karato,et al.  Low-temperature, high-stress deformation of olivine under water-saturated conditions , 2008 .

[14]  P. Burnley,et al.  Interpreting in situ x-ray diffraction data from high pressure deformation experiments using elastic–plastic self-consistent models: an example using quartz , 2008 .

[15]  B. Evans,et al.  Relationships between the microstructural evolution and the rheology of talc at elevated pressures and temperatures , 2008 .

[16]  Xavier Gonze,et al.  Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure , 2008 .

[17]  F. Albarède,et al.  Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust , 2008 .

[18]  B. Reynard,et al.  High-Pressure Creep of Serpentine, Interseismic Deformation, and Initiation of Subduction , 2007, Science.

[19]  Michael J. Rymer,et al.  Talc-bearing serpentinite and the creeping section of the San Andreas fault , 2007, Nature.

[20]  M. Rosing,et al.  A Vestige of Earth's Oldest Ophiolite , 2007, Science.

[21]  B. Reynard,et al.  P–V Equations of State and the relative stabilities of serpentine varieties , 2006 .

[22]  T. M. Harrison,et al.  Heterogeneous Hadean Hafnium: Evidence of Continental Crust at 4.4 to 4.5 Ga , 2005, Science.

[23]  D. Hamann,et al.  Erratum: Metric tensor formulation of strain in density-functional perturbation theory [Phys. Rev. B 71, 035117 (2005)] , 2005 .

[24]  Xavier Gonze,et al.  A brief introduction to the ABINIT software package , 2005 .

[25]  Astronomy,et al.  Metric tensor formulation of strain in density-functional perturbation theory , 2004, cond-mat/0409269.

[26]  B. W. Evans The Serpentinite Multisystem Revisited: Chrysotile Is Metastable , 2004 .

[27]  C. Mével Serpentinization of abyssal peridotites at mid-ocean ridges , 2003 .

[28]  J. Escartín,et al.  Constraints on deformation conditions and the origin of oceanic detachments: The Mid‐Atlantic Ridge core complex at 15°45′N , 2003 .

[29]  R. Dietmar Müller,et al.  Catastrophic initiation of subduction following forced convergence across fracture zones , 2003 .

[30]  Yanbin Wang,et al.  The deformation-DIA: A new apparatus for high temperature triaxial deformation to pressures up to 15 GPa , 2003 .

[31]  David Bercovici,et al.  The generation of plate tectonics from mantle convection , 2003 .

[32]  Brett A. Hunter,et al.  Rietveld refinement of neutron, synchrotron and combined powder diffraction data of cement clinker , 2002 .

[33]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[34]  H. Shiobara,et al.  Crustal structure study at the Izu-Bonin subduction zone around 31°N: implications of serpentinized materials along the subduction plate boundary , 2002 .

[35]  A. Hofmann,et al.  Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth , 2002 .

[36]  D. Yuen,et al.  The Initiation of Subduction: Criticality by Addition of Water? , 2001, Science.

[37]  T. M. Harrison,et al.  Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago , 2001, Nature.

[38]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[39]  T. Masuda,et al.  Plate Tectonics at 3.8–3.7 Ga: Field Evidence from the Isua Accretionary Complex, Southern West Greenland , 1999, The Journal of Geology.

[40]  H. Mao,et al.  Analysis of lattice strains measured under nonhydrostatic pressure , 1998 .

[41]  B. Evans,et al.  Effects of serpentinization on the lithospheric strength and the style of normal faulting at slow-spreading ridges , 1997 .

[42]  D. Lockner,et al.  Strengths of serpentinite gouges at elevated temperatures , 1997 .

[43]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[44]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[45]  C. Viti,et al.  Hydrogen positions and thermal expansion in lizardite-1T from Elba: A low-temperature study using Rietveld refinement of neutron diffraction data , 1996 .

[46]  R. Wintsch,et al.  Fluid‐rock reaction weakening of fault zones , 1995 .

[47]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[48]  C. Viti,et al.  Crystal structure of lizardite-1T from Elba, Italy , 1994 .

[49]  J. Weeks,et al.  The frictional behavior of lizardite and antigorite serpentinites: Experiments, constitutive models, and implications for natural faults , 1994 .

[50]  A. Kronenberg,et al.  Experimental deformation of muscovite , 1993 .

[51]  J. A. Pearce,et al.  Blueschist metamorphism in an active subduction zone , 1993, Nature.

[52]  William T. Shea,et al.  Rheology and deformation mechanisms of an isotropic mica schist , 1992 .

[53]  M. Mottl,et al.  Lithology, Mineralogy, and Origin of Serpentine Muds Recovered from Conical and Torishima Forearc Seamounts: Results of Leg 125 Drilling , 1992 .

[54]  J. Weeks,et al.  The frictional behavior of serpentinite: Implications for aseismic creep on shallow crustal faults , 1991 .

[55]  J. Pinkston,et al.  Basal slip and mechanical anisotropy of biotite , 1990 .

[56]  X. Gonze,et al.  Density-functional approach to nonlinear-response coefficients of solids. , 1989, Physical review. B, Condensed matter.

[57]  O. Anderson,et al.  Anharmonicity and the equation of state for gold , 1989 .

[58]  R. F. Dymek,et al.  Titanian chondrodite- and titanian clinohumite-bearing metadunite from the 3800 Ma Isua supracrustal belt, West Greenland; chemistry, petrology and origin , 1988 .

[59]  Testa,et al.  Green's-function approach to linear response in solids. , 1987, Physical review letters.

[60]  J. Byerlee Friction of rocks , 1978 .

[61]  S. Murrell,et al.  The effect of decomposition of hydrous minerals on the mechanical properties of rocks at high pressures and temperatures , 1976 .

[62]  M. Paterson,et al.  Experimental deformation of serpentinite and its tectonic implications , 1965 .

[63]  Y. A. Wang,et al.  First-principles computational studies of the , 2011 .

[64]  P. Carrez,et al.  Modeling Dislocations and Plasticity of Deep Earth Materials , 2010 .

[65]  Liping Wang,et al.  New measurements of activation volume in olivine under anhydrous conditions , 2009 .

[66]  Ronnnr F. Dvnrnr,et al.  Titanian chondrodite-and titanian clinohumite-bearing metadunite from the 3800 Ma Isua supracrustal belt West Greenland : Chemistry , petrology , and origin , 2007 .

[67]  Gian-Marco Rignanese,et al.  First-principle studies of the lattice dynamics of crystals, and related properties , 2005 .

[68]  V. Solomatov Initiation of subduction by small-scale convection , 2004 .