The Pattern Matrix Method

We develop a novel technique for communication lower bounds, the pattern matrix method. Specifically, fix an arbitrary function $f: \{0,1\}^n \to\{0,1\}$, and let $A_f$ be the matrix whose columns are each an application of $f$ to some subset of the variables $x_1,x_2,\ldots,x_{4n}.$ We prove that $A_f$ has bounded-error communication complexity $\Omega(d),$ where $d$ is the approximate degree of $f.$ This result remains valid in the quantum model, regardless of prior entanglement. In particular, it gives a new and simple proof of Razborov's breakthrough quantum lower bounds for disjointness and other symmetric predicates. We further characterize the discrepancy, approximate rank, and approximate trace norm of $A_f$ in terms of well-studied analytic properties of $f,$ broadly generalizing several recent results on small-bias communication and agnostic learning. The method of this paper has also enabled important progress in multiparty communication complexity.

[1]  Nikolai K. Vereshchagin,et al.  Lower bounds for perceptrons solving some separation problems and oracle separation of AM from PP , 1995, Proceedings Third Israel Symposium on the Theory of Computing and Systems.

[2]  Scott Aaronson,et al.  BQP and the polynomial hierarchy , 2009, STOC '10.

[3]  Andrew Chi-Chih Yao,et al.  Informational complexity and the direct sum problem for simultaneous message complexity , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[4]  H. Buhrman,et al.  Complexity measures and decision tree complexity: a survey , 2002, Theor. Comput. Sci..

[5]  Hartmut Klauck,et al.  Interaction in quantum communication and the complexity of set disjointness , 2001, STOC '01.

[6]  Noam Nisan,et al.  On the degree of boolean functions as real polynomials , 1992, STOC '92.

[7]  Ran Raz,et al.  Exponential Separation for One-Way Quantum Communication Complexity, with Applications to Cryptography , 2008, SIAM J. Comput..

[8]  Ryan O'Donnell,et al.  New degree bounds for polynomial threshold functions , 2010, Comb..

[9]  Alex Samorodnitsky,et al.  Inclusion-exclusion: Exact and approximate , 1996, Comb..

[10]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[11]  Emanuele Viola,et al.  Improved Separations between Nondeterministic and Randomized Multiparty Communication , 2008, APPROX-RANDOM.

[12]  Nikolai K. Vereshchagin,et al.  On Computation and Communication with Small Bias , 2007, Computational Complexity Conference.

[13]  Richard Beigel,et al.  Perceptrons, PP, and the polynomial hierarchy , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[14]  Alexander A. Sherstov Halfspace Matrices , 2007, Computational Complexity Conference.

[15]  Scott Aaronson,et al.  Quantum lower bounds for the collision and the element distinctness problems , 2004, JACM.

[16]  Avi Wigderson,et al.  Quantum vs. classical communication and computation , 1998, STOC '98.

[17]  A. Razborov Quantum communication complexity of symmetric predicates , 2002, quant-ph/0204025.

[18]  Michael E. Saks,et al.  Lattices, mobius functions and communications complexity , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[19]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry , 1969 .

[20]  Pavel Pudlák,et al.  Threshold circuits of bounded depth , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[21]  Alexander A. Sherstov Approximate Inclusion-Exclusion for Arbitrary Symmetric Functions , 2008, Computational Complexity Conference.

[22]  Andris Ambainis,et al.  Polynomial Degree and Lower Bounds in Quantum Complexity: Collision and Element Distinctness with Small Range , 2003, Theory Comput..

[23]  Ronald de Wolf,et al.  Communication complexity lower bounds by polynomials , 1999, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[24]  Rocco A. Servedio,et al.  Toward Attribute Efficient Learning of Decision Lists and Parities , 2006, J. Mach. Learn. Res..

[25]  Rocco A. Servedio,et al.  Learning intersections and thresholds of halfspaces , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[26]  Alexander A. Sherstov Communication Lower Bounds Using Dual Polynomials , 2008, Bull. EATCS.

[27]  Ramamohan Paturi,et al.  On the degree of polynomials that approximate symmetric Boolean functions (preliminary version) , 1992, STOC '92.

[28]  Alexander A. Sherstov SeparatingAC0 from Depth-2 Majority Circuits , 2009, SIAM J. Comput..

[29]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[30]  James Aspnes,et al.  The expressive power of voting polynomials , 1994, Comb..

[31]  N. Nisan The communication complexity of threshold gates , 1993 .

[32]  Pavel Pudlák,et al.  On the Computational Power of Depth-2 Circuits with Threshold and Modulo Gates , 1997, Theor. Comput. Sci..

[33]  Alexander A. Razborov,et al.  On the Distributional Complexity of Disjointness , 1992, Theor. Comput. Sci..

[34]  Andris Ambainis,et al.  The Quantum Communication Complexity of Sampling , 2003, SIAM J. Comput..

[35]  Adi Shraibman,et al.  Lower bounds in communication complexity based on factorization norms , 2009 .

[36]  Alexander A. Sherstov,et al.  A Lower Bound for Agnostically Learning Disjunctions , 2007, COLT.

[37]  Toniann Pitassi,et al.  Separating NOF communication complexity classes RP and NP , 2008, Electron. Colloquium Comput. Complex..

[38]  Yoav Freund,et al.  Boosting a weak learning algorithm by majority , 1990, COLT '90.

[39]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[40]  Kurt Mehlhorn,et al.  Las Vegas is better than determinism in VLSI and distributed computing (Extended Abstract) , 1982, STOC '82.

[41]  Hartmut Klauck Lower Bounds for Quantum Communication Complexity , 2007, SIAM J. Comput..

[42]  Alexander A. Sherstov Separating AC0 from depth-2 majority circuits , 2007, STOC '07.

[43]  Troy Lee,et al.  Disjointness is Hard in the Multiparty Number-on-the-Forehead Model , 2007, 2008 23rd Annual IEEE Conference on Computational Complexity.

[44]  Prahladh Harsha,et al.  Pattern Matrix Method , 2012 .

[45]  Ronald de Wolf,et al.  Improved Quantum Communication Complexity Bounds for Disjointness and Equality , 2001, STACS.

[46]  V. Tikhomirov,et al.  DUALITY OF CONVEX FUNCTIONS AND EXTREMUM PROBLEMS , 1968 .

[47]  Troy Lee,et al.  Disjointness Is Hard in the Multi-party Number-on-the-Forehead Model , 2008, Computational Complexity Conference.

[48]  Yaoyun Shi,et al.  Quantum communication complexity of block-composed functions , 2007, Quantum Inf. Comput..

[49]  Ronald de Wolf,et al.  Bounds for small-error and zero-error quantum algorithms , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[50]  Janos Simon,et al.  Probabilistic Communication Complexity , 1986, J. Comput. Syst. Sci..

[51]  Alexander A. Razborov,et al.  Majority gates vs. general weighted threshold gates , 2005, computational complexity.

[52]  Andrew Chi-Chih Yao,et al.  Some complexity questions related to distributive computing(Preliminary Report) , 1979, STOC.

[53]  R. Schapire,et al.  Toward efficient agnostic learning , 1992, COLT '92.

[54]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[55]  Rocco A. Servedio,et al.  Learning DNF in time 2Õ(n1/3) , 2004, J. Comput. Syst. Sci..

[56]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[57]  Vladimir V. Podolskii,et al.  A Uniform Lower Bound on Weights of Perceptrons , 2008, CSR.

[58]  Pavel Pudlák,et al.  Computing Boolean functions by polynomials and threshold circuits , 1998, computational complexity.

[59]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[60]  Alexander A. Sherstov,et al.  Unconditional lower bounds for learning intersections of halfspaces , 2007, Machine Learning.

[61]  William H. Kautz,et al.  On the Size of Weights Required for Linear-Input Switching Functions , 1961, IRE Transactions on Electronic Computers.

[62]  Eyal Kushilevitz,et al.  Communication Complexity , 1997, Adv. Comput..

[63]  Ran Raz,et al.  Fourier analysis for probabilistic communication complexity , 1995, computational complexity.

[64]  Nathan Linial,et al.  Learning Complexity vs. Communication Complexity , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.

[65]  Ronald de Wolf,et al.  A note on quantum algorithms and the minimal degree of ε-error polynomials for symmetric functions , 2008, Quantum Inf. Comput..

[66]  Paul Beame,et al.  Multiparty Communication Complexity of AC^0 , 2008, Electron. Colloquium Comput. Complex..

[67]  Arkadev Chattopadhyay,et al.  Multiparty Communication Complexity of Disjointness , 2008, Electron. Colloquium Comput. Complex..

[68]  Vladimir V. Podolskii Perceptrons of Large Weight , 2007, CSR.

[69]  Bala Kalyanasundaram,et al.  The Probabilistic Communication Complexity of Set Intersection , 1992, SIAM J. Discret. Math..