Limitations of Bispectral Infrared Cloud Phase Determination and Potential for Improvement

Abstract Determining cloud thermodynamic phase using infrared satellite observations typically requires a priori assumptions about relationships between cloud phase and cloud temperature. In this study, limitations of an approach using two infrared channels with moderate spectral resolutions are demonstrated, as well as the potential for improvement using channels with higher spectral resolution. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument uses a bispectral infrared cloud phase determination algorithm. MODIS observations during January 2005 show that approximately 23% of cloudy pixels are classified as mixed or unknown cloud phase; this increases to 78% when only cloud-top temperatures between 250 and 265 K are considered. Radiative transfer simulations show that the bispectral algorithm has limited ability to discriminate between water and ice clouds in this temperature range. There is also the potential for thin ice clouds at colder temperatures to be misclassified as water clou...

[1]  S. Warren,et al.  Optical constants of ice from the ultraviolet to the microwave. , 1984, Applied optics.

[2]  J. Curry,et al.  Confronting Models with Data: The Gewex Cloud Systems Study , 2003 .

[3]  G. Stephens Cloud Feedbacks in the Climate System: A Critical Review , 2005 .

[4]  D. Jackson,et al.  Trends in Global Cloud Cover in Two Decades of HIRS Observations , 2005 .

[5]  Larry D. Travis,et al.  Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers , 1998 .

[6]  Piet Stammes,et al.  Cloud Thermodynamic-Phase Determination From Near-Infrared Spectra of Reflected Sunlight , 2002 .

[7]  K. Trenberth,et al.  Modern Global Climate Change , 2003, Science.

[8]  Steven A. Ackerman,et al.  The 27–28 October 1986 FIRE IFO Cirrus Case Study: Spectral Properties of Cirrus Clouds in the 8–12 μm Window , 1990 .

[9]  James J. Hack,et al.  Cloud feedback in atmospheric general circulation models: An update , 1996 .

[10]  Steven Platnick,et al.  Retrieval of semitransparent ice cloud optical thickness from atmospheric infrared sounder (AIRS) measurements , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[11]  C. Borel,et al.  Mixed phase cloud water/ice structure from high spatial resolution satellite data , 2004 .

[12]  W. Paul Menzel,et al.  The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..

[13]  M. Baker,et al.  Cloud Microphysics and Climate , 1997 .

[14]  William L. Smith,et al.  AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[15]  William L. Smith,et al.  Cirrus Cloud Properties Derived from High Spectral Resolution Infrared Spectrometry during FIRE II. Part I: The High Resolution Interferometer Sounder (HIS) Systems , 1995 .

[16]  W. Paul Menzel,et al.  Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 2. Cloud thermodynamic phase , 2000 .

[17]  Scott E. Hannon,et al.  Nighttime cirrus detection using Atmospheric Infrared Sounder window channels and total column water vapor , 2005 .

[18]  Knut Stamnes,et al.  Radiative transfer in stratified atmospheres: Development and verification of a unified model , 1990 .

[19]  Michael D. King,et al.  Comparison of near‐infrared and thermal infrared cloud phase detections , 2006 .

[20]  W. Menzel,et al.  Discriminating clear sky from clouds with MODIS , 1998 .

[21]  Jerome Riedi,et al.  Global distribution of cloud top phase from POLDER/ADEOS I , 2000 .

[22]  Andrew A. Lacis,et al.  Global, seasonal cloud variations from satellite radiance measurements. II - Cloud properties and radiative effects , 1990 .

[23]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[24]  Andrew Gettelman,et al.  Tropical thin cirrus and relative humidity observed by the Atmospheric Infrared Sounder , 2007 .

[25]  T. Pagano,et al.  Use of Atmospheric Infrared Sounder high–spectral resolution spectra to assess the calibration of Moderate resolution Imaging Spectroradiometer on EOS Aqua , 2006 .

[26]  Bryan A. Baum,et al.  A fast infrared radiative transfer model for overlapping clouds , 2007 .

[27]  Christopher P. Weaver,et al.  Improved Techniques for Evaluating GCM Cloudiness Applied to the NCAR CCM3 , 2001 .

[28]  B. Barkstrom,et al.  Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment , 1989, Science.

[29]  Michael J. Garay,et al.  The radiative consistency of Atmospheric Infrared Sounder and Moderate Resolution Imaging Spectroradiometer cloud retrievals , 2007 .

[30]  W. Paul Menzel,et al.  Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS , 2003, IEEE Trans. Geosci. Remote. Sens..

[31]  B. Barkstrom,et al.  Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment , 1990 .

[32]  Bryan A. Baum,et al.  The Development of Midlatitude Cirrus Models for MODIS Using FIRE-I, FIRE-II, and ARM In Situ Data , 2002 .

[33]  Shepard A. Clough,et al.  Accelerated monochromatic radiative transfer for scattering atmospheres: Application of a new model to spectral , 1997 .

[34]  W. Paul Menzel,et al.  Retrieval of Cloud Microphysical Properties from MODIS and AIRS , 2005 .

[35]  Claire L. Parkinson,et al.  Aqua: an Earth-Observing Satellite mission to examine water and other climate variables , 2003, IEEE Trans. Geosci. Remote. Sens..

[36]  Shepard A. Clough,et al.  Near micron‐sized cirrus cloud particles in high‐resolution infrared spectra: An orographic case study , 2003 .

[37]  E. Clothiaux,et al.  Cloud Droplet Size Distributions in Low-Level Stratiform Clouds , 2000 .

[38]  Ping Yang,et al.  Interpretation of AIRS Data in Thin Cirrus Atmospheres Based on a Fast Radiative Transfer Model , 2006 .

[39]  D. Randall,et al.  Mission to planet Earth: Role of clouds and radiation in climate , 1995 .

[40]  Peter Pilewskie,et al.  Cloud Phase Discrimination by Reflectance Measurements near 1.6 and 2.2 , 1987 .

[41]  Kathleen A. Crean,et al.  Multiangle imaging spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations : Global aerosol system , 2005 .

[42]  Dudley H. Williams,et al.  Optical constants of water in the infrared , 1975 .

[43]  W. Menzel,et al.  Four Years of Global Cirrus Cloud Statistics Using HIRS, Revised , 1994 .

[44]  Yoram J. Kaufman,et al.  Earth Observing System AM1 mission to Earth , 1998, IEEE Trans. Geosci. Remote. Sens..

[45]  Ben S Cooper,et al.  Confronting models with data. , 2007, The Journal of hospital infection.

[46]  Thomas S. Pagano,et al.  Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1 , 1998, IEEE Trans. Geosci. Remote. Sens..

[47]  Bryan A. Baum,et al.  The spectral signature of mixed-phase clouds composed of non-spherical ice crystals and spherical liquid droplets in the terrestrial window region , 2003 .

[48]  Bryan A. Baum,et al.  Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 1. Data and models , 2000 .

[49]  W. Paul Menzel,et al.  Airborne Scanning Spectrometer for Remote Sensing of Cloud, Aerosol, Water Vapor, and Surface Properties , 1996 .

[50]  John P. Burrows,et al.  The cloud phase discrimination from a satellite , 2006, IEEE Geoscience and Remote Sensing Letters.

[51]  Taneil Uttal,et al.  Daytime Global Cloud Typing from AVHRR and VIIRS: Algorithm Description, Validation, and Comparisons , 2005 .

[52]  W. Paul Menzel,et al.  Cloud Properties inferred from 812-µm Data , 1994 .

[53]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[54]  David P. Kratz,et al.  THE CORRELATED k-DISTRIBUTION TECHNIQUE AS APPLIED TO THE AVHRR CHANNELS , 1995 .

[55]  A. Baran,et al.  Simulation of infrared scattering from ice aggregates by use of a size-shape distribution of circular ice cylinders. , 2003, Applied optics.

[56]  Bruce A. Wielicki,et al.  Evidence for Large Decadal Variability in the Tropical Mean Radiative Energy Budget , 2002, Science.