Probabilistic and average linear widths of weighted Sobolev spaces on the ball equipped with a Gaussian measure

Let $L_{q,\mu}$, $1\leq q\leq\infty$, denotes the weighted $L_q$ space of functions on the unit ball $\Bbb B^d$ with respect to weight $(1-\|x\|_2^2)^{\mu-\frac12},\,\mu\ge 0$, and let $W_{2,\mu}^r$ be the weighted Sobolev space on $\Bbb B^d$ with a Gaussian measure $\nu$. We investigate the probabilistic linear $(n,\delta)$-widths $\lambda_{n,\delta}(W_{2,\mu}^r,\nu,L_{q,\mu})$ and the $p$-average linear $n$-widths $\lambda_n^{(a)}(W_{2,\mu}^r,\mu,L_{q,\mu})_p$, and obtain their asymptotic orders for all $1\le q\le \infty$ and $0

[1]  W. Chengyong μ-average N-widths on the Wiener space , 1994 .

[2]  Chen Guanggui,et al.  Probabilistic and average widths of multivariate Sobolev spaces with mixed derivative equipped with the Gaussian measure , 2004 .

[3]  V. Maiorov Linear Widths of Function Spaces Equipped with the Gaussian Measure , 1994 .

[4]  Cheng Guanggui,et al.  Linear widths of a multivariate function space equipped with a Gaussian measure , 2005 .

[5]  Heping Wang,et al.  Probabilistic and Average Widths of Sobolev Spaces on Compact Two-Point Homogeneous Spaces Equipped with a Gaussian Measure , 2014 .

[6]  Vitaly Maiorov About Widths of Wiener Space in the Lq-Norm , 1996, J. Complex..

[7]  Yuan Xu,et al.  Orthogonal Polynomials of Several Variables , 2014, 1701.02709.

[8]  Feng Dai,et al.  Multivariate polynomial inequalities with respect to doubling weights and A∞ weights , 2006 .

[9]  Yuan Xu,et al.  Summability of Fourier orthogonal series for Jacobi weight on a ball in ℝ , 1999 .

[10]  H. Kuo Gaussian Measures in Banach Spaces , 1975 .

[11]  Gensun Fang,et al.  Probabilistic and average linear widths of Sobolev space with Gaussian measure , 2003, J. Complex..

[12]  Heping Wang,et al.  Approximation of functions on the Sobolev space with a Gaussian measure , 2010 .

[13]  Gensun Fang,et al.  Probabilistic and average widths of multivariate Sobolev spaces with mixed derivative equipped with the Gaussian measure , 2004, J. Complex..

[14]  Heping Wang,et al.  Best approximation of functions on the ball on the weighted Sobolev space equipped with a Gaussian measure , 2010, J. Approx. Theory.

[15]  Klaus Ritter,et al.  Average-case analysis of numerical problems , 2000, Lecture notes in mathematics.

[16]  Ye Peixin,et al.  Probabilistic and Average Linear Widths of Sobolev Space with Gaussian Measure in L\infty-Norm , 2003 .

[17]  Yongsheng Sun,et al.  mu-Average n-Widths on the Wiener Space , 1994, J. Complex..

[18]  Heping Wang,et al.  Approximation of multivariate periodic functions on the L2 space with a Gaussian measure , 2012 .

[19]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[20]  Luo Xin-jian,et al.  The approximation characteristic of diagonal matrix in probabilistic setting , 2010 .

[21]  Heping Wang,et al.  Linear n-widths of diagonal matrices in the average and probabilistic settings , 2012 .

[22]  V. Bogachev Gaussian Measures on a , 2022 .

[23]  Xinjian Luo,et al.  The approximation characteristic of diagonal matrix in probabilistic setting , 2010, J. Complex..

[24]  Yuan Xu,et al.  Localized Polynomial Frames on the Ball , 2006 .

[25]  George E. Andrews,et al.  Special Functions: Partitions , 1999 .

[26]  Hongwei Huang,et al.  Widths of weighted Sobolev classes on the ball , 2008, J. Approx. Theory.

[27]  Vitaly Maiorov,et al.  Average n-Widths of the Wiener Space in the Linfinity-Norm , 1993, J. Complex..

[28]  Yanwei Zhang,et al.  Approximation of functions on the Sobolev space on the sphere in the average case setting , 2009, J. Complex..

[29]  G. Wasilkowski,et al.  Probabilistic and Average Linear Widths inL∞-Norm with Respect tor-fold Wiener Measure , 1996 .

[30]  Z. Ditzian,et al.  Fractional Derivatives and Best Approximation , 1998 .

[31]  H. Woxniakowski Information-Based Complexity , 1988 .

[32]  Ye Peixin,et al.  Probabilistic and average linear widths of Sobolev space with Gaussian measure , 2003 .