Enhanced performance of thin-film solar cell by metallic nanostructural vertical dual model

Abstract. Our present work proposes a systematic geometric model comprising vertical dual silver nanostrips placed on the top of a thin-film amorphous silicon solar cell. In the first layer, cylindrical silver nanostrips are embedded in the antireflection coating and the other one is placed just above it. Combining the two improves the absorption over the wide spectral range. A finite-difference time domain technique has been used to confirm that a vertical dual silver nanostructure improves absorption over a broad spectrum in comparison to a single layer. Size, shape, and interspacing of the nanostructures have been tuned to obtain the preeminent results. This optimized geometry gives a total quantum efficiency of 32.02% under AM1.5G.

[1]  Richard K. Chang,et al.  Local fields at the surface of noble-metal microspheres , 1981 .

[2]  A. Polman Plasmonic Solar Cells , 2010 .

[3]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[4]  Yi Zou,et al.  Parasitic loss suppression in photonic and plasmonic photovoltaic light trapping structures. , 2014, Optics express.

[5]  M. Kondo,et al.  Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties , 2010 .

[6]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[7]  Albert Polman,et al.  Design principles for particle plasmon enhanced solar cells , 2008 .

[8]  Helmut Stiebig,et al.  Optical Properties of Microcrystalline Thin Film Solar Cells , 2000 .

[9]  Dennis G. Hall,et al.  Island size effects in nanoparticle-enhanced photodetectors , 1998 .

[10]  Martin A. Green,et al.  The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions , 2011 .

[11]  Aravind Krishnan,et al.  Multilayer nanoparticle arrays for broad spectrum absorption enhancement in thin film solar cells. , 2013, Optics express.

[12]  Shanhui Fan,et al.  Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells , 2013, Nature Communications.

[13]  Dennis G. Hall,et al.  Absorption enhancement in silicon‐on‐insulator waveguides using metal island films , 1996 .

[14]  Carsten Rockstuhl,et al.  Absorption enhancement in solar cells by localized plasmon polaritons , 2008 .

[15]  G. Whitesides,et al.  Light Trapping in Ultrathin Plasmonic Solar Cells References and Links , 2022 .

[16]  Harry A. Atwater,et al.  Erratum: Plasmonics for improved photovoltaic devices , 2010 .

[17]  Isodiana Crupi,et al.  Colloidal plasmonic back reflectors for light trapping in solar cells. , 2014, Nanoscale.

[18]  Rihong Zhu,et al.  Design of a plasmonic back reflector for silicon nanowire decorated solar cells. , 2012, Optics letters.

[19]  Fuhua Yang,et al.  Multilayer silver nanoparticles for light trapping in thin film solar cells , 2013 .

[20]  Albert Polman,et al.  Tunable light trapping for solar cells using localized surface plasmons , 2009 .