SpoT-Triggered Stringent Response Controls usp Gene Expression in Pseudomonas aeruginosa

ABSTRACT The universal stress proteins (Usps) UspK (PA3309) and UspN (PA4352) of Pseudomonas aeruginosa are essential for surviving specific anaerobic energy stress conditions such as pyruvate fermentation and anaerobic stationary phase. Expression of the respective genes is under the control of the oxygen-sensing regulator Anr. In this study we investigated the regulation of uspN and three additional P. aeruginosa usp genes: uspL (PA1789), uspM (PA4328), and uspO (PA5027). Anr induces expression of these genes in response to anaerobic conditions. Using promoter-lacZ fusions, we showed that P uspL -lacZ, P uspM -lacZ, and P uspO -lacZ were also induced in stationary phase as described for P uspN -lacZ. However, stationary phase gene expression was abolished in the P. aeruginosa triple mutant Δanr ΔrelA ΔspoT. The relA and spoT genes encode the regulatory components of the stringent response. We determined pppGpp and ppGpp levels using a thin-layer chromatography approach and detected the accumulation of ppGpp in the wild type and the ΔrelA mutant in stationary phase, indicating a SpoT-derived control of ppGpp accumulation. Additional investigation of stationary phase in LB medium revealed that alkaline pH values are involved in the regulatory process of ppGpp accumulation.

[1]  R. Gourse,et al.  Mechanism of regulation of transcription initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and competition for RNAP. , 2001, Journal of molecular biology.

[2]  Stacie A. Brown,et al.  Membrane-Bound Nitrate Reductase Is Required for Anaerobic Growth in Cystic Fibrosis Sputum , 2007, Journal of bacteriology.

[3]  V. Shingler,et al.  Properties of RNA Polymerase Bypass Mutants , 2007, Journal of Biological Chemistry.

[4]  C. van Delden,et al.  Stringent Response Activates Quorum Sensing and Modulates Cell Density-Dependent Gene Expression inPseudomonas aeruginosa , 2001, Journal of bacteriology.

[5]  C. Harwood,et al.  Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration , 2007, Molecular microbiology.

[6]  Melanie B. Berkmen,et al.  DksA potentiates direct activation of amino acid promoters by ppGpp , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  J M Tiedje,et al.  Anaerobic activation of the entire denitrification pathway in Pseudomonas aeruginosa requires Anr, an analog of Fnr , 1995, Journal of bacteriology.

[8]  T. Nyström,et al.  Expression and role of the universal stress protein, UspA, of Escherichia coli during growth arrest , 1994, Molecular microbiology.

[9]  H. Bremer,et al.  Control of spoT-dependent ppGpp synthesis and degradation in Escherichia coli. , 1996, Journal of molecular biology.

[10]  J. Guest,et al.  FNR and its role in oxygen-regulated gene expression in Escherichia coli , 1990 .

[11]  F. Neidhardt,et al.  Escherichia Coli and Salmonella: Typhimurium Cellular and Molecular Biology , 1987 .

[12]  D. Haas,et al.  Positive FNR-like control of anaerobic arginine degradation and nitrate respiration in Pseudomonas aeruginosa , 1991, Journal of bacteriology.

[13]  Joel T. Smith,et al.  The global, ppGpp‐mediated stringent response to amino acid starvation in Escherichia coli , 2008, Molecular microbiology.

[14]  V. de Lorenzo,et al.  Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. , 1994, Methods in enzymology.

[15]  M. Son,et al.  In Vivo Evidence of Pseudomonas aeruginosa Nutrient Acquisition and Pathogenesis in the Lungs of Cystic Fibrosis Patients , 2007, Infection and Immunity.

[16]  T. Nyström,et al.  The universal stress protein paralogues of Escherichia coli are co‐ordinately regulated and co‐operate in the defence against DNA damage , 2002, Molecular microbiology.

[17]  R. Sawers Identification and molecular characterization of a transcriptional regulator from Pseudomonas aeruginosa PAO1 exhibiting structural and functional similarity to the FNR protein of Escherichia coli , 1991, Molecular microbiology.

[18]  M. Nomura,et al.  spoT-dependent accumulation of guanosine tetraphosphate in response to fatty acid starvation in Escherichia coli. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[19]  T. Nyström,et al.  RpoS-dependent Promoters Require Guanosine Tetraphosphate for Induction Even in the Presence of High Levels of ςs * , 2000, The Journal of Biological Chemistry.

[20]  M. Welch,et al.  Interrelationships between Colonies, Biofilms, and Planktonic Cells of Pseudomonas aeruginosa , 2007, Journal of bacteriology.

[21]  L. Guy,et al.  Quorum-Sensing-Negative (lasR) Mutants of Pseudomonas aeruginosa Avoid Cell Lysis and Death , 2005, Journal of bacteriology.

[22]  Y. Igarashi,et al.  Regulation of Pseudomonas aeruginosa hemF and hemN by the dual action of the redox response regulators Anr and Dnr , 1998, Molecular microbiology.

[23]  H. Schweizer,et al.  A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. , 1998, Gene.

[24]  Frederick R. Blattner,et al.  Transcription Profiling of the Stringent Response in Escherichia coli , 2007, Journal of bacteriology.

[25]  H. Xiao,et al.  Residual guanosine 3',5'-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. , 1991, The Journal of biological chemistry.

[26]  É. Potvin,et al.  Sigma factors in Pseudomonas aeruginosa. , 2008, FEMS microbiology reviews.

[27]  G. Mittenhuber Comparative genomics and evolution of genes encoding bacterial (p)ppGpp synthetases/hydrolases (the Rel, RelA and SpoT proteins). , 2001, Journal of molecular microbiology and biotechnology.

[28]  S. M. Sullivan,et al.  The Escherichia coli GTPase CgtAE Cofractionates with the 50S Ribosomal Subunit and Interacts with SpoT, a ppGpp Synthetase/Hydrolase , 2004, Journal of bacteriology.

[29]  E. Härtig,et al.  The Pseudomonas aeruginosa Universal Stress Protein PA4352 Is Essential for Surviving Anaerobic Energy Stress , 2006, Journal of bacteriology.

[30]  Dieter Jahn,et al.  Virtual Footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes , 2005, Bioinform..

[31]  A. Piérard,et al.  Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway , 1984, Journal of bacteriology.

[32]  D. Wells,et al.  Helicobacter pylori Initiates the Stringent Response upon Nutrient and pH Downshift , 2006, Journal of bacteriology.

[33]  E. Bochkareva,et al.  Identification and characterization of the Escherichia coli stress protein UP12, a putative in vivo substrate of GroEL. , 2002, European journal of biochemistry.

[34]  H. Schweizer,et al.  Integration-proficient Pseudomonas aeruginosa vectors for isolation of single-copy chromosomal lacZ and lux gene fusions. , 2000, BioTechniques.

[35]  M. Cashel,et al.  Mutational analysis of the Escherichia coli spoT gene identifies distinct but overlapping regions involved in ppGpp synthesis and degradation , 1996, Molecular microbiology.

[36]  M. Cashel,et al.  The stringent response , 1996 .

[37]  M. Hecker,et al.  Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis , 2002, Journal of bacteriology.

[38]  T. Nyström,et al.  The bacterial universal stress protein: function and regulation. , 2003, Current opinion in microbiology.

[39]  Daniel N. Wilson,et al.  Dissection of the mechanism for the stringent factor RelA. , 2002, Molecular cell.

[40]  T. Nyström,et al.  Differential Roles of the Universal Stress Proteins of Escherichia coli in Oxidative Stress Resistance, Adhesion, and Motility , 2005, Journal of bacteriology.

[41]  K. Guillemin,et al.  The Stringent Response Is Required for Helicobacter pylori Survival of Stationary Phase, Exposure to Acid, and Aerobic Shock , 2006, Journal of bacteriology.

[42]  A. Paccanaro,et al.  Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles , 2006, BMC Genomics.

[43]  T. Nyström,et al.  Regulation of sigma factor competition by the alarmone ppGpp. , 2002, Genes & development.

[44]  V. Venturi,et al.  Pseudomonas aeruginosa relA Contributes to Virulence in Drosophila melanogaster , 2004, Infection and Immunity.

[45]  George M. Hilliard,et al.  Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. , 2002, Developmental cell.

[46]  T. Nyström,et al.  Metabolic control of the Escherichia coli universal stress protein response through fructose‐6‐phosphate , 2007, Molecular microbiology.

[47]  H. Williams,et al.  A Two-Component Regulator of Universal Stress Protein Expression and Adaptation to Oxygen Starvation in Mycobacterium smegmatis , 2003, Journal of bacteriology.

[48]  J. Buer,et al.  Long-Term Anaerobic Survival of the Opportunistic Pathogen Pseudomonas aeruginosa via Pyruvate Fermentation , 2004, Journal of bacteriology.

[49]  E. Ron Bacterial Stress Response , 2006 .

[50]  L. Boddy,et al.  The effect of oxygen on denitrification in Paracoccus denitrificans and Pseudomonas aeruginosa. , 1989, Journal of general microbiology.

[51]  Frederick M Ausubel,et al.  Correction for Liberati et al., An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants , 2006, Proceedings of the National Academy of Sciences.

[52]  M. Hentzer,et al.  Anaerobic Survival of Pseudomonas aeruginosa by Pyruvate Fermentation Requires an Usp-Type Stress Protein , 2006, Journal of bacteriology.

[53]  H. Williams,et al.  Regulation of expression of the cyanide-insensitive terminal oxidase in Pseudomonas aeruginosa. , 2003, Microbiology.

[54]  Jeffrey H. Miller A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Rela , 1992 .

[55]  T. Nyström,et al.  Emergency derepression: stringency allows RNA polymerase to override negative control by an active repressor , 2000, Molecular microbiology.

[56]  Richard C Boucher,et al.  Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. , 2002, The Journal of clinical investigation.

[57]  D. Richter Uncharged tRNA inhibits guanosine 3′,5′-bis (diphosphate) 3′-pyrophosphohydrolase [ppGppase], the spoT gene product, from Escherichia coli , 2004, Molecular and General Genetics MGG.

[58]  B. Holloway,et al.  Pleiotrophy of p-fluorophenylalanine-resistant and antibiotic hypersensitive mutants of Pseudomonas aeruginosa. , 1971, Genetical research.

[59]  E. Bouveret,et al.  Acyl carrier protein/SpoT interaction, the switch linking SpoT‐dependent stress response to fatty acid metabolism , 2006, Molecular microbiology.

[60]  E. Dassa,et al.  The energy-dependent degradation of guanosine 5'-diphosphate 3'-diphosphate in Escherichia coli. Lack of correlation with ATP levels in vivo and role of the transmembrane proton gradient. , 1980, European journal of biochemistry.

[61]  S. Kjelleberg,et al.  Role of spoT-dependent ppGpp accumulation in the survival of light-exposed starved bacteria. , 2002, Microbiology.