EDA-Based Multi-objective Optimization Using Preference Order Ranking and Multivariate Gaussian Copula

Estimation of distribution algorithms (EDAs) are a class of evolutionary optimization algorithms based on probability distribution model. This article extends the basic EDAs for tackling multi-objective optimization problems by incorporating multivariate Gaussian copulas for constructing probability distribution model, and using the concept of preference order. In the algorithm, the multivariate Gaussian copula is used to construct probability distribution model in EDAs. By estimating Kendall's τ and using the relationship of correlation matrix and Kendall's τ, correlation matrix R in Gaussian copula are firstly estimated from the current population, and then is used to generate offsprings. Preference order is used to identify the best individuals in order to guide the search process. The population with the current population and current offsprings population is sorted based on preference order, and the best individuals are selected to form the next population. The algorithm is tested to compare with NSGA-II, GDE, MOEP and MOPSO based on convergence metric and diversity metric using a set of benchmark functions. The experimental results show that the algorithm is effective on the benchmark functions.

[1]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[2]  Ponnuthurai N. Suganthan,et al.  Multi-objective evolutionary programming without non-domination sorting is up to twenty times faster , 2009, 2009 IEEE Congress on Evolutionary Computation.

[3]  E. Luciano,et al.  Copula methods in finance , 2004 .

[4]  Raymond Chiong,et al.  Nature-Inspired Algorithms for Optimisation , 2009, Nature-Inspired Algorithms for Optimisation.

[5]  Indraneel Das A preference ordering among various Pareto optimal alternatives , 1999 .

[6]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[7]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[8]  Carlos A. Coello Coello,et al.  Ranking Methods in Many-Objective Evolutionary Algorithms , 2009, Nature-Inspired Algorithms for Optimisation.

[9]  Pedro Larrañaga,et al.  Estimation of Distribution Algorithms , 2002, Genetic Algorithms and Evolutionary Computation.

[10]  Soon-Thiam Khu,et al.  An Investigation on Preference Order Ranking Scheme for Multiobjective Evolutionary Optimization , 2007, IEEE Transactions on Evolutionary Computation.

[11]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[12]  David E. Goldberg,et al.  Limits of scalability of multiobjective estimation of distribution algorithms , 2005, 2005 IEEE Congress on Evolutionary Computation.

[13]  E. Luciano,et al.  Copula Methods in Finance: Cherubini/Copula , 2004 .

[14]  Jouni Lampinen,et al.  Performance assessment of Generalized Differential Evolution 3 with a given set of constrained multi-objective test problems , 2009, 2009 IEEE Congress on Evolutionary Computation.

[15]  David E. Goldberg,et al.  Multiobjective Estimation of Distribution Algorithms , 2006, Scalable Optimization via Probabilistic Modeling.

[16]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[17]  Qingfu Zhang,et al.  The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances , 2009, 2009 IEEE Congress on Evolutionary Computation.

[18]  Bijaya K. Panigrahi,et al.  Multi-objective optimization with artificial weed colonies , 2011, Inf. Sci..

[19]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[20]  Siddhartha Shakya,et al.  Optimization by estimation of distribution with DEUM framework based on Markov random fields , 2007, Int. J. Autom. Comput..

[21]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[22]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .