Molecular evolution of bat color vision genes.

The two suborders of bats, Megachiroptera (megabats) and Microchiroptera (microbats), use different sensory modalities for perceiving their environment. Megabats are crepuscular and rely on a well-developed eyes and visual pathway, whereas microbats occupy a nocturnal niche and use acoustic orientation or echolocation more than vision as the major means of perceiving their environment. In view of the differences associated with their sensory systems, we decided to investigate the function and evolution of color vision (opsin genes) in these two suborders of bats. The middle/long wavelength (M/L) and short wavelength (S) opsin genes were sequenced from two frugivorous species of megabats, Haplonycteris fischeri and Pteropus dasymallus formosus, and one insectivorous species of microbat, Myotis velifer. Contrary to the situation in primates, where many nocturnal species have lost the functional S opsin gene, both crepuscular and strictly nocturnal species of bats that we examined have functional M/L and S opsin genes. Surprisingly, the S opsin in these bats may be sensitive to UV light, which is relatively more abundant at dawn and at dusk. The M/L opsin in these bats appears to be the L type, which is sensitive to red and may be helpful for identifying fruits among leaves or for other purposes. Most interestingly, H. fischeri has a recent duplication of the M/L opsin gene, representing to date the only known case of opsin gene duplication in non-primate mammals. Some of these observations are unexpected and may provide insights into the effect of nocturnal life on the evolution of opsin genes in mammals and the evolution of the life history traits of bats in general.

[1]  Masami Hasegawa,et al.  Monophyletic Origin of the Order Chiroptera and Its Phylogenetic Position Among Mammalia, as Inferred from the Complete Sequence of the Mitochondrial DNA of a Japanese Megabat, the Ryukyu Flying Fox (Pteropus dasymallus) , 2000, Journal of Molecular Evolution.

[2]  S. Daan,et al.  Can the circadian system of a diurnal and a nocturnal rodent entrain to ultraviolet light? , 2000, Journal of Comparative Physiology A.

[3]  J. Nathans,et al.  Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. , 1986, Science.

[4]  Z. Fuzessery,et al.  Passive sound localization of prey by the pallid bat (Antrozous p. pallidus) , 2004, Journal of Comparative Physiology A.

[5]  S. Poopalasundaram,et al.  Vision in the ultraviolet , 2001, Cellular and Molecular Life Sciences CMLS.

[6]  G. H. Jacobs,et al.  Cone photopigments in nocturnal and diurnal procyonids , 1992, Journal of Comparative Physiology A.

[7]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[8]  Emma C. Teeling,et al.  Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[9]  G H Jacobs,et al.  Spectral tuning of pigments underlying red-green color vision. , 1991, Science.

[10]  L. Beazley,et al.  Trichromacy in Australian Marsupials , 2002, Current Biology.

[11]  Helga Kolb,et al.  The mammalian photoreceptor mosaic-adaptive design , 2000, Progress in Retinal and Eye Research.

[12]  C. J. Phillips Ontogeny, functional ecology, and evolution of bats: A theoretical consideration of dental morphology, ontogeny, and evolution in bats , 2000 .

[13]  S. Yokoyama,et al.  The molecular genetics and evolution of red and green color vision in vertebrates. , 2001, Genetics.

[14]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[15]  G. H. Jacobs,et al.  Cone receptor variations and their functional consequences in two species of hamster , 1999, Visual Neuroscience.

[16]  G. H. Jacobs THE DISTRIBUTION AND NATURE OF COLOUR VISION AMONG THE MAMMALS , 1993, Biological reviews of the Cambridge Philosophical Society.

[17]  H. Heffner,et al.  Sound localization in a new-world frugivorous bat, Artibeus jamaicensis: acuity, use of binaural cues, and relationship to vision. , 2001, The Journal of the Acoustical Society of America.

[18]  S. Deeb,et al.  The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution. , 2003, Molecular biology and evolution.

[19]  G. H. Jacobs,et al.  Cone-based vision of rats for ultraviolet and visible lights. , 2001, The Journal of experimental biology.

[20]  S. Yokoyama,et al.  Genetics and evolution of ultraviolet vision in vertebrates , 2000, FEBS letters.

[21]  G. Jones Ontogeny, Functional Ecology, and Evolution of Bats , 2002 .

[22]  D. Oprian,et al.  Molecular determinants of human red/green color discrimination , 1994, Neuron.

[23]  J. Pettigrew,et al.  Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: implications for visual acuity. , 1988, Brain, behavior and evolution.

[24]  Wen-Hsiung Li,et al.  Sequences and Evolution of Human and Squirrel Monkey Blue Opsin Genes , 1997, Journal of Molecular Evolution.

[25]  M. Fenton,et al.  Flight and echlocation in the ecology and evolution of bats. , 1997, Trends in ecology & evolution.

[26]  J. Nathans,et al.  Mechanisms of spectral tuning in the mouse green cone pigment. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Pettigrew Flying primates? Megabats have the advanced pathway from eye to midbrain. , 1986, Science.

[28]  E. Kalko,et al.  Relation of fig fruit characteristics to fruit‐eating bats in the New and Old World tropics , 1996 .

[29]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[30]  S. Yokoyama,et al.  The molecular genetics of red and green color vision in mammals. , 1999, Genetics.

[31]  Wen-Hsiung Li,et al.  The molecular clock ticks regularly in muroid rodents and hamsters , 1992, Journal of Molecular Evolution.

[32]  Sakamoto,et al.  Two opsins from the compound eye of the crab Hemigrapsus sanguineus , 1996, The Journal of experimental biology.

[33]  K. P. Bhatnagar Olfaction inArtibeus jamaicensis andMyotis lucifugus in the context of vision and echolocation , 1975, Experientia.

[34]  Julio Rozas,et al.  DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis , 1999, Bioinform..

[35]  J. Geisler,et al.  Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bulletin of the AMNH ; no. 235 , 1998 .

[36]  Diana J. Kao,et al.  Molecular evidence regarding the origin of echolocation and flight in bats , 2000, Nature.

[37]  Spectral sensitivity of the photoreceptors responsible for phase shifting the circadian rhythm of activity in the bat,Hipposideros speoris , 1985, Journal of Comparative Physiology A.

[38]  J. Kleinschmidt,et al.  Anion sensitivity and spectral tuning of cone visual pigments in situ. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[39]  K. Crandall,et al.  Rhodopsin evolution in the dark , 1997, Nature.

[40]  S. Yokoyama,et al.  Initial mutational steps toward loss of opsin gene function in cavefish. , 1995, Molecular biology and evolution.

[41]  H. Khorana,et al.  Assembly of functional rhodopsin requires a disulfide bond between cysteine residues 110 and 187. , 1990, The Journal of biological chemistry.

[42]  G. H. Jacobs,et al.  Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[43]  J. Mollon,et al.  Sequence and evolution of the blue cone pigment gene in Old and New World primates. , 1995, Genomics.

[44]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[45]  S. Kawamura,et al.  Regeneration of ultraviolet pigments of vertebrates , 1998, FEBS letters.

[46]  G. H. Jacobs,et al.  Opsin gene and photopigment polymorphism in a prosimian primate , 2002, Vision Research.

[47]  A. Hendrickson,et al.  Distribution and density of medium- and short-wavelength selective cones in the domestic pig retina. , 2002, Experimental eye research.

[48]  S. Yokoyama,et al.  Genetic analyses of the green visual pigments of rabbit (Oryctolagus cuniculus) and rat (Rattus norvegicus). , 1998, Gene.

[49]  P. Hargrave,et al.  Site of attachment of 11-cis-retinal in bovine rhodopsin. , 1980, Biochemistry.

[50]  F. I. Hárosi An analysis of two spectral properties of vertebrate visual pigments , 1994, Vision Research.

[51]  K. Arikawa,et al.  Two visual pigments in a single photoreceptor cell: identification and histological localization of three mRNAs encoding visual pigment opsins in the retina of the butterfly Papilio xuthus. , 1998, The Journal of experimental biology.

[52]  M. Nei,et al.  Color vision of ancestral organisms of higher primates. , 1997, Molecular biology and evolution.

[53]  Á. Szél,et al.  Short and mid‐wavelength cone distribution in a nocturnal Strepsirrhine primate (Microcebus murinus) , 2001, The Journal of comparative neurology.

[54]  J. Bowmaker,et al.  The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments. , 2002, The Biochemical journal.

[55]  J Nathans,et al.  Determinants of visual pigment absorbance: identification of the retinylidene Schiff's base counterion in bovine rhodopsin. , 1990, Biochemistry.

[56]  M. Lynch,et al.  The evolutionary fate and consequences of duplicate genes. , 2000, Science.

[57]  G. Bell,et al.  The sensory basis of prey location by the California leaf-nosed bat Macrotus californicus (Chiroptera: Phyllostomidae) , 1985, Behavioral Ecology and Sociobiology.

[58]  E. Nevo,et al.  Spectral tuning of a circadian photopigment in a subterranean ‘blind’ mammal (Spalax ehrenbergi) , 1999, FEBS Letters.

[59]  Jay Neitz,et al.  L-cone pigment genes expressed in normal colour vision , 1998, Vision Research.