A high-order discontinuous Galerkin method for nonlinear sound waves

We propose a high-order discontinuous Galerkin scheme for nonlinear acoustic waves on polytopic meshes. To model sound propagation with and without losses, we use Westervelt's nonlinear wave equation with and without strong damping. Challenges in the numerical analysis lie in handling the nonlinearity in the model, which involves the derivatives in time of the acoustic velocity potential, and in preventing the equation from degenerating. We rely in our approach on the Banach fixed-point theorem combined with a stability and convergence analysis of a linear wave equation with a variable coefficient in front of the second time derivative. By doing so, we derive an a priori error estimate for Westervelt's equation in a suitable energy norm for the polynomial degree $p \geq 2$. Numerical experiments carried out in two-dimensional settings illustrate the theoretical convergence results. In addition, we demonstrate efficiency of the method in a three-dimensional domain with varying medium parameters, where we use the discontinuous Galerkin approach in a hybrid way.

[1]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[2]  Jerrold E. Marsden,et al.  Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity , 1977 .

[3]  R. Lerch,et al.  Finite element simulation of nonlinear wave propagation in thermoviscous fluids including dissipation , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[4]  B T Cox,et al.  Time domain reconstruction of sound speed and attenuation in ultrasound computed tomography using full wave inversion. , 2017, The Journal of the Acoustical Society of America.

[5]  J. Vanderkooy,et al.  A Two-Dimensional Study of Finite Amplitude Sound Waves in a Trumpet Using the Discontinuous Galerkin Method , 2014 .

[6]  D. M. Campbell Nonlinear dynamics of musical reed and brass wind instruments , 1999 .

[7]  F. Duck Nonlinear acoustics in diagnostic ultrasound. , 2002, Ultrasound in medicine & biology.

[8]  D. G. Crighton,et al.  MODEL EQUATIONS OF NONLINEAR ACOUSTICS , 1979 .

[9]  Marcus J. Grote,et al.  Discontinuous Galerkin Finite Element Method for the Wave Equation , 2006, SIAM J. Numer. Anal..

[10]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[11]  Paola F. Antonietti,et al.  Simulation of 3D elasto-acoustic wave propagation based on a Discontinuous Galerkin Spectral Element method , 2019, ArXiv.

[12]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[13]  P. Houston,et al.  hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes , 2017 .

[14]  Alessandro Colombo,et al.  Agglomeration based discontinuous Galerkin discretization of the Euler and Navier-Stokes equations , 2012 .

[15]  David Maresca,et al.  Nonlinear ultrasound imaging of nanoscale acoustic biomolecules. , 2017, Applied physics letters.

[16]  Paul Houston,et al.  hp-Version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes , 2016 .

[17]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[18]  Chiara Smerzini,et al.  SPEED: SPectral Elements in Elastodynamics with Discontinuous Galerkin: a non‐conforming approach for 3D multi‐scale problems , 2013 .

[19]  Andrew J. Majda,et al.  Absorbing Boundary Conditions for Numerical Simulation of Waves , 1977 .

[20]  J. Kelly,et al.  Linear and nonlinear ultrasound simulations using the discontinuous Galerkin method. , 2018, The Journal of the Acoustical Society of America.

[21]  P. J. Westervelt Parametric Acoustic Array , 1963 .

[22]  T. Roubíček Nonlinear partial differential equations with applications , 2005 .

[23]  Vera A. Khokhlova,et al.  Effect of the angular aperture of medical ultrasound transducers on the parameters of nonlinear ultrasound field with shocks at the focus , 2015 .

[24]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[25]  Barbara Wohlmuth,et al.  A Priori Error Estimates for the Finite Element Approximation of Westervelt's Quasi-linear Acoustic Wave Equation , 2019, SIAM J. Numer. Anal..

[26]  B. Kaltenbacher,et al.  Global existence and exponential decay rates for the Westervelt equation , 2009 .

[27]  Hyung Jin Lim,et al.  Nonlinear ultrasonic wave modulation for online fatigue crack detection , 2014 .

[28]  Paola F. Antonietti,et al.  A high-order discontinuous Galerkin approach to the elasto-acoustic problem , 2018, Computer Methods in Applied Mechanics and Engineering.

[29]  Emmanuil H. Georgoulis,et al.  hp-Version Space-Time Discontinuous Galerkin Methods for Parabolic Problems on Prismatic Meshes , 2016, SIAM J. Sci. Comput..

[30]  Emmanuil H. Georgoulis,et al.  Inverse-type estimates on hp-finite element spaces and applications , 2008, Math. Comput..

[31]  Claes Hedberg,et al.  Theory of Nonlinear Acoustics in Fluids , 2002 .

[32]  Endre Süli,et al.  Discontinuous Galerkin Finite Element Approximation of Nonlinear Second-Order Elliptic and Hyperbolic Systems , 2007, SIAM J. Numer. Anal..

[33]  Paola F. Antonietti,et al.  High-order Discontinuous Galerkin methods for the elastodynamics equation on polygonal and polyhedral meshes , 2018, Computer Methods in Applied Mechanics and Engineering.

[34]  Y. Kagawa,et al.  A simulation study on nonlinear sound propagation by finite element approach , 1992 .

[35]  M. Wilke,et al.  Optimal Regularity and Long-Time Behavior of Solutions for the Westervelt Equation , 2011, 1502.05816.

[36]  Adrian Luca,et al.  Element centered smooth artificial viscosity in discontinuous Galerkin method for propagation of acoustic shock waves on unstructured meshes , 2018, J. Comput. Phys..

[37]  Blanca Ayuso de Dios,et al.  Stability Analysis of Discontinuous Galerkin Approximations to the Elastodynamics Problem , 2013, J. Sci. Comput..

[38]  Alessandro Colombo,et al.  Agglomeration-based physical frame dG discretizations: An attempt to be mesh free , 2014 .

[39]  Stefano Giani,et al.  Review of Discontinuous Galerkin Finite Element Methods for Partial Differential Equations on Complicated Domains , 2016, IEEE CSE 2016.

[40]  Willy Dörfler,et al.  Local well-posedness of a quasilinear wave equation , 2016 .

[41]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[42]  O. Pavlenko,et al.  Nonlinear Seismic Effects in Soils: Numerical Simulation and Study , 2001 .

[43]  Yoshihiro Shibata,et al.  Global existence and exponential stability of small solutions to nonlinear viscoelasticity , 1992 .

[44]  J. Tinsley Oden,et al.  A discontinuous hp finite element method for the Euler and Navier–Stokes equations , 1999 .

[45]  Ivan C. Christov,et al.  MODELING WEAKLY NONLINEAR ACOUSTIC WAVE PROPAGATION , 2007 .

[46]  Barbara Kaltenbacher,et al.  Absorbing boundary conditions for nonlinear acoustics: The Westervelt equation , 2015, J. Comput. Phys..

[47]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[48]  Wieslaw J. Staszewski,et al.  Comparative study of nonlinear acoustic and Lamb wave techniques for fatigue crack detection in metallic structures , 2008 .

[49]  Shona Logie,et al.  Effects of nonlinear sound propagation on the characteristic timbres of brass instruments. , 2012, The Journal of the Acoustical Society of America.

[50]  Manfred Kaltenbacher,et al.  Numerical Simulation of Mechatronic Sensors and Actuators , 2004 .

[51]  B. Kaltenbacher,et al.  Efficient time integration methods based on operator splitting and application to the Westervelt equation , 2013, 1311.1224.

[52]  B. Kaltenbacher,et al.  Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions , 2011 .