暂无分享,去创建一个
[1] Shai Ben-David,et al. Understanding Machine Learning: From Theory to Algorithms , 2014 .
[2] Y. Peres,et al. Determinantal Processes and Independence , 2005, math/0503110.
[3] Mohit Singh,et al. Proportional Volume Sampling and Approximation Algorithms for A-Optimal Design , 2018, SODA.
[4] Cheng Zhang,et al. Active Mini-Batch Sampling using Repulsive Point Processes , 2018, AAAI.
[5] H. Robbins. A Stochastic Approximation Method , 1951 .
[6] O. Macchi. The coincidence approach to stochastic point processes , 1975, Advances in Applied Probability.
[7] Matthew P. Wand,et al. Kernel Smoothing , 1995 .
[8] Subhro Ghosh. Determinantal processes and completeness of random exponentials: the critical case , 2012, 1211.2435.
[9] Alexander Soshnikov. Gaussian limit for determinantal random point fields , 2000 .
[10] Pierre Chainais,et al. A determinantal point process for column subset selection , 2018, J. Mach. Learn. Res..
[11] Santosh S. Vempala,et al. The Random Projection Method , 2005, DIMACS Series in Discrete Mathematics and Theoretical Computer Science.
[12] Eric Moulines,et al. Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Machine Learning , 2011, NIPS.
[13] Arnaud Poinas,et al. On proportional volume sampling for experimental design in general spaces , 2020 .
[14] Pierre Priouret,et al. Adaptive Algorithms and Stochastic Approximations , 1990, Applications of Mathematics.
[15] Ben Taskar,et al. Determinantal Point Processes for Machine Learning , 2012, Found. Trends Mach. Learn..
[16] A. Hardy,et al. Monte Carlo with determinantal point processes , 2016, The Annals of Applied Probability.
[17] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[18] Richard Nickl,et al. Uniform central limit theorems for kernel density estimators , 2008 .
[19] Hedvig Kjellstrom,et al. Determinantal Point Processes for Mini-Batch Diversification , 2017, UAI 2017.
[20] A. W. van der Vaart,et al. Uniform Central Limit Theorems , 2001 .
[21] Barry Simon,et al. The Christoffel-Darboux Kernel , 2008, 0806.1528.
[22] P. Rigollet,et al. Gaussian determinantal processes: A new model for directionality in data , 2020, Proceedings of the National Academy of Sciences.
[23] Ulrike Goldschmidt,et al. An Introduction To The Theory Of Point Processes , 2016 .
[24] Pierre-Olivier Amblard,et al. Determinantal Point Processes for Coresets , 2018, J. Mach. Learn. Res..
[25] Mark W. Schmidt,et al. Accelerated training of conditional random fields with stochastic gradient methods , 2006, ICML.
[26] A. Soshnikov. Determinantal random point fields , 2000, math/0002099.
[27] R'emi Bardenet,et al. Learning from DPPs via Sampling: Beyond HKPV and symmetry , 2020, ArXiv.
[28] J. Møller,et al. Determinantal point process models and statistical inference , 2012, 1205.4818.
[29] Michael W. Mahoney,et al. Determinantal Point Processes in Randomized Numerical Linear Algebra , 2020, Notices of the American Mathematical Society.
[30] Manfred K. Warmuth,et al. Unbiased estimates for linear regression via volume sampling , 2017, NIPS.
[31] Michal Valko,et al. DPPy: Sampling Determinantal Point Processes with Python , 2018, ArXiv.
[32] Pierre Chainais,et al. Kernel interpolation with continuous volume sampling , 2020, ICML.
[33] Jennifer Gillenwater. Approximate inference for determinantal point processes , 2014 .