Origin of Retroreflection from a Wing of the Morpho Butterfly

We have performed detailed angular and spectroscopic measurements on a typical species of Morpho butterflies, Morpho rhetenor , and have found that the butterfly wing shows characteristic retroreflection in a blue region, when light is incident around 10–30° inclined from the normal to the scales on the wing. Various angular and spectroscopic measurements such as detector and sample rotations, and θ–2θ scan are tested, and apart from an inclusive method of θ–φ scan, the sample rotation method is found to be the most appropriate to characterize its optical properties. In order to investigate the origin of the retroreflection, non-standard finite-difference time-domain method is applied and alternate shelf structure is found to be responsible for it. Its optical characteristics are more intuitively understood by two simple models, destructive interference between two units of one-sided shelf structure and two inversely inclined multilayers, although such models are not complete in a strict sense. The presen...

[1]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[2]  Shuichi Kinoshita,et al.  Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  Takayuki Hoshino,et al.  Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition , 2005 .

[4]  K. Gentil Elektronenmikroskopische Untersuchung des Feinbaues Schillernder Leisten von Morpho-Schuppen , 1942, Zeitschrift für Morphologie und Ökologie der Tiere.

[5]  Leon Poladian,et al.  Exaggeration and suppression of iridescence: the evolution of two-dimensional butterfly structural colours , 2006, Journal of The Royal Society Interface.

[6]  Ioannis N. Miaoulis,et al.  Spectral imaging, reflectivity measurements, and modeling of iridescent butterfly scale structures , 2001 .

[7]  Glenn S. Smith Structural color of Morpho butterflies , 2009 .

[8]  H. Ghiradella Light and color on the wing: structural colors in butterflies and moths. , 1991, Applied optics.

[9]  James B. Cole,et al.  High-accuracy Yee algorithm based on nonstandard finite differences: new developments and verifications , 2002 .

[10]  Shuichi Kinoshita,et al.  Physics of structural colors , 2008 .

[11]  D. Stavenga,et al.  Imaging scatterometry of butterfly wing scales. , 2009, Optics express.

[12]  J. B. Cole,et al.  Colour characterization of a Morpho butterfly wing-scale using a high accuracy nonstandard finite-difference time-domain method. , 2007, Micron.

[13]  Tielin Shi,et al.  Optical properties of the micro/nano structures of Morpho butterfly wing scales , 2010 .

[14]  Shuichi Kinoshita,et al.  Wavelength–selective and anisotropic light–diffusing scale on the wing of the Morpho butterfly , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[15]  A. Richards,et al.  An Electron Microscope Study of Some Structural Colors of Insects , 1942 .

[16]  C. W. Mason,et al.  Structural Colors in Insects. II , 1926 .

[17]  L. Plattner Optical properties of the scales of Morpho rhetenor butterflies: theoretical and experimental investigation of the back-scattering of light in the visible spectrum , 2004, Journal of The Royal Society Interface.

[18]  Glenn S. Smith,et al.  Detailed electromagnetic simulation for the structural color of butterfly wings. , 2009, Applied optics.

[19]  S. Kinoshita,et al.  Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[20]  P. K. C. Pillai Spectral Reflection Characteristics of Morpho Butterfly Wing , 1968 .

[21]  T Eisner,et al.  Ultraviolet Reflection of a Male Butterfly: Interference Color Caused by Thin-Layer Elaboration of Wing Scales , 1972, Science.

[22]  H. Ghiradella,et al.  Structure of Iridescent Lepidopteran Scales: Variations on Several Themes , 1984 .

[23]  W. Lippert,et al.  Über lamellare feinstrukturen bei den schillerschuppen der schmetterlinge vom urania- und morpho-typ , 2004, Zeitschrift für Morphologie und Ökologie der Tiere.

[24]  S. Berthier,et al.  Morphological structure and optical properties of the wings of Morphidae , 2006 .

[25]  Shuichi Kinoshita,et al.  Photophysics of Structural Color in the Morpho Butterflies , 2002 .

[26]  A. M. Young,et al.  Wing coloration and reflectance in Morpho butterflies as related to reproductive behavior and escape from avian predators , 1971, Oecologia.

[27]  Makio Akimoto,et al.  Microstructures and Optical Properties of Scales of Butterfly Wings , 1996 .

[28]  James J. Cowan Aztec surface-relief volume diffractive structure , 1990 .

[29]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[30]  Andrew R. Parker,et al.  Structural colour in animals—simple to complex optics , 2006 .

[31]  Shuichi Kinoshita,et al.  Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  S Enoch,et al.  Morpho butterflies wings color modeled with lamellar grating theory. , 2001, Optics express.

[33]  R. Wootton,et al.  Quantified interference and diffraction in single Morpho butterfly scales , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[34]  Raymond J. Luebbers,et al.  A two-dimensional time-domain near-zone to far-zone transformation , 1991 .

[35]  Rodolfo H. Torres,et al.  Anatomically diverse butterfly scales all produce structural colours by coherent scattering , 2006, Journal of Experimental Biology.

[36]  Serge Berthier,et al.  Determination of the cuticle index of the scales of the iridescent butterfly Morpho menelaus , 2003 .

[37]  J. B. Cole A high-accuracy realization of the Yee algorithm using non-standard finite differences , 1997 .

[38]  Shuichi Kinoshita,et al.  Structural colors in nature: the role of regularity and irregularity in the structure. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[39]  Yong Ding,et al.  Structural colors from Morpho peleides butterfly wing scales , 2009 .

[40]  M. Srinivasarao Nano-Optics in the Biological World: Beetles, Butterflies, Birds, and Moths. , 1999, Chemical reviews.