RELICS: Reionization Lensing Cluster Survey

Large surveys of galaxy clusters with the Hubble Space Telescope (HST) and Spitzer, including the Cluster Lensing And Supernova survey with Hubble and the Frontier Fields, have demonstrated the power of strong gravitational lensing to efficiently deliver large samples of high-redshift galaxies. We extend this strategy through a wider, shallower survey named RELICS, the Reionization Lensing Cluster Survey, described here. Our 188-orbit Hubble Treasury Program observed 41 clusters at 0.182 ≤ z ≤ 0.972 with Advanced Camera for Surveys (ACS) and WFC3/IR imaging spanning 0.4–1.7 μm. We selected 21 of the most massive clusters known based on Planck PSZ2 estimates and 20 additional clusters based on observed or inferred lensing strength. RELICS observed 46 WFC3/IR pointings (∼200 arcmin2) each with two orbits divided among four filters (F105W, F125W, F140W, and F160W) and ACS imaging as needed to achieve single-orbit depth in each of three filters (F435W, F606W, and F814W). As previously reported by Salmon et al., we discovered over 300 z ∼ 6–10 candidates, including the brightest z ∼ 6 candidates known, and the most distant spatially resolved lensed arc known at z ∼ 10. Spitzer IRAC imaging (945 hr awarded, plus 100 archival, spanning 3.0–5.0 μm) has crucially enabled us to distinguish z ∼ 10 candidates from z ∼ 2 interlopers. For each cluster, two HST observing epochs were staggered by about a month, enabling us to discover 11 supernovae, including 3 lensed supernovae, which we followed up with 20 orbits from our program. Reduced HST images, catalogs, and lens models are available on MAST, and reduced Spitzer images are available on IRSA.

[1]  B. Frye,et al.  Highly Magnified Stars in Lensing Clusters: New Evidence in a Galaxy Lensed by MACS J0416.1-2403 , 2019, The Astrophysical Journal.

[2]  Nick Kaiser,et al.  Searching for Highly Magnified Stars at Cosmological Distances: Discovery of a Redshift 0.94 Blue Supergiant in Archival Images of the Galaxy Cluster MACS J0416.1-2403 , 2019, The Astrophysical Journal.

[3]  S. Finkelstein,et al.  Conditions for Reionizing the Universe with a Low Galaxy Ionizing Photon Escape Fraction , 2019, The Astrophysical Journal.

[4]  A. Fontana,et al.  Inferences on the timeline of reionization at z ∼ 8 from the KMOS Lens-Amplified Spectroscopic Survey , 2019, Monthly Notices of the Royal Astronomical Society.

[5]  T. Treu,et al.  Constraining the Neutral Fraction of Hydrogen in the IGM at Redshift 7.5 , 2019, The Astrophysical Journal.

[6]  D. Coe,et al.  RELICS: Strong Lensing Analysis of MACS J0417.5–1154 and Predictions for Observing the Magnified High-redshift Universe with JWST , 2018, The Astrophysical Journal.

[7]  R. Massey,et al.  The core of the massive cluster merger MACS J0417.5−1154 as seen by VLT/MUSE , 2018, Monthly Notices of the Royal Astronomical Society.

[8]  J. Mohr,et al.  Impact of Weak Lensing Mass Calibration on eROSITA Galaxy Cluster Cosmological Studies – a Forecast , 2018, Monthly Notices of the Royal Astronomical Society.

[9]  D. Coe,et al.  RELICS: High-resolution Constraints on the Inner Mass Distribution of the z = 0.83 Merging Cluster RXJ0152.7-1357 from Strong Lensing , 2018, The Astrophysical Journal.

[10]  D. Coe Back in Time. , 2018, Scientific American.

[11]  R. Massey,et al.  Observable tests of self-interacting dark matter in galaxy clusters: cosmological simulations with SIDM and baryons , 2018, Monthly Notices of the Royal Astronomical Society.

[12]  P. Dayal Early galaxy formation and its large-scale effects , 2018, Proceedings of the International Astronomical Union.

[13]  D. Coe,et al.  The Bright-end Galaxy Candidates at z ∼ 9 from 79 Independent HST Fields , 2018, The Astrophysical Journal.

[14]  V. Bosch-Ramon The role of AGN jets in the reionization epoch , 2018, Astronomy & Astrophysics.

[15]  C. A. Oxborrow,et al.  Planck2018 results , 2018, Astronomy & Astrophysics.

[16]  A. Merloni,et al.  Forecasts on dark energy from the X-ray cluster survey with eROSITA: constraints from counts and clustering , 2018, Monthly Notices of the Royal Astronomical Society.

[17]  K. Sharon,et al.  An Evaluation of 10 Lensing Models of the Frontier Fields Cluster MACS J0416.1-2403 , 2018, The Astrophysical Journal.

[18]  N. Yoshida,et al.  Detection of the Far-infrared [O iii] and Dust Emission in a Galaxy at Redshift 8.312: Early Metal Enrichment in the Heart of the Reionization Era , 2018, The Astrophysical Journal.

[19]  D. Watson,et al.  Big Three Dragons: A z = 7.15 Lyman-break galaxy detected in [O iii] 88 μm, [C ii] 158 μm, and dust continuum with ALMA , 2018, Publications of the Astronomical Society of Japan.

[20]  Czech Republic,et al.  Low-redshift Lyman continuum leaking galaxies with high [O iii]/[O ii] ratios , 2018, 1805.09865.

[21]  T. Schrabback,et al.  RELICS: A Strong Lens Model for SPT-CLJ0615–5746, a z = 0.972 Cluster , 2018, The Astrophysical Journal.

[22]  M. Trenti,et al.  GLACiAR, an Open-Source Python Tool for Simulations of Source Recovery and Completeness in Galaxy Surveys , 2018, Publications of the Astronomical Society of Australia.

[23]  R. Pelló,et al.  The onset of star formation 250 million years after the Big Bang , 2018, Nature.

[24]  R. Ellis,et al.  Spectroscopic Constraints on UV Metal Line Emission at z ≃ 6 − 9 The Nature of Lyα Emitting Galaxies in the Reionization-Era , 2018, Monthly Notices of the Royal Astronomical Society.

[25]  D. Coe,et al.  RELICS: Strong Lensing Analysis of the Galaxy Clusters Abell S295, Abell 697, MACS J0025.4-1222, and MACS J0159.8-0849 , 2018, The Astrophysical Journal.

[26]  J. Kneib,et al.  The extreme faint end of the UV luminosity function at z ∼ 6 through gravitational telescopes: a comprehensive assessment of strong lensing uncertainties , 2018, Monthly Notices of the Royal Astronomical Society.

[27]  D. Coe,et al.  RELICS: Strong-lensing Analysis of the Massive Clusters MACS J0308.9+2645 and PLCK G171.9−40.7 , 2018, 1803.00560.

[28]  M. Lombardi,et al.  Measuring the Value of the Hubble Constant “à la Refsdal” , 2018, The Astrophysical Journal.

[29]  F. Timmes,et al.  On the Observability of Individual Population III Stars and Their Stellar-mass Black Hole Accretion Disks through Cluster Caustic Transits , 2018, 1903.06527.

[30]  D. Coe,et al.  RELICS: A Candidate z ∼ 10 Galaxy Strongly Lensed into a Spatially Resolved Arc , 2018, The Astrophysical Journal.

[31]  M. Giavalisco,et al.  Direct Lyman continuum and Ly α escape observed at redshift 4 , 2017, 1712.07661.

[32]  G. Bernstein,et al.  The Hubble Constant from SN Refsdal , 2017, 1712.05800.

[33]  A. Fontana,et al.  Kiloparsec-scale gaseous clumps and star formation at $z=5-7$ , 2017, 1712.03985.

[34]  Florida,et al.  Galaxy growth in a massive halo in the first billion years of cosmic history , 2017, Nature.

[35]  O. Ilbert,et al.  SILVERRUSH. V. Census of Lyα, [O iii] λ5007, Hα, and [C ii] 158 μm Line Emission with ∼1000 LAEs at z = 4.9–7.0 Revealed with Subaru/HSC , 2017, 1711.03735.

[36]  R. Bouwens,et al.  The Dearth of z ∼ 10 Galaxies in All HST Legacy Fields—The Rapid Evolution of the Galaxy Population in the First 500 Myr , 2017, 1710.11131.

[37]  B. Garilli,et al.  The VIMOS Ultra-Deep Survey: evidence for AGN feedback in galaxies with CIII]-λ1908 Å emission 10.8 to 12.5 Gyr ago , 2017, Astronomy & Astrophysics.

[38]  D. Coe,et al.  RELICS: Strong Lens Models for Five Galaxy Clusters from the Reionization Lensing Cluster Survey , 2017, The Astrophysical Journal.

[39]  G. Fűrész,et al.  The Sunburst Arc: Direct Lyman α escape observed in the brightest known lensed galaxy , 2017, 1710.09482.

[40]  P. Madau Cosmic Reionization after Planck and before JWST: An Analytic Approach , 2017, 1710.07636.

[41]  M. Oguri,et al.  Size–Luminosity Relations and UV Luminosity Functions at z = 6–9 Simultaneously Derived from the Complete Hubble Frontier Fields Data , 2017, 1710.07301.

[42]  T. Treu,et al.  The Universe Is Reionizing at z ∼ 7: Bayesian Inference of the IGM Neutral Fraction Using Lyα Emission from Galaxies , 2017, 1709.05356.

[43]  O. Fèvre,et al.  The VIMOS Ultra Deep Survey: On the nature, ISM properties, and ionizing spectra of CIII]1909 emitters at z=2-4 , 2017, 1709.03990.

[44]  A. Zitrin,et al.  A Spectroscopic Search for AGN Activity in the Reionization Era , 2017, 1708.05173.

[45]  H. Rottgering,et al.  Complex diffuse emission in the z = 0.52 cluster PLCK G004.5-19.5 , 2017, 1708.00789.

[46]  Kyle L. Luther,et al.  The Discovery of a Gravitationally Lensed Supernova Ia at Redshift 2.22 , 2017, The Astrophysical Journal.

[47]  B. Weiner,et al.  Two peculiar fast transients in a strongly lensed host galaxy , 2017, 1707.02434.

[48]  J. Rigby,et al.  Star Formation at z = 2.481 in the Lensed Galaxy SDSS J1110+6459: Star Formation Down to 30 pc Scales , 2017, The astrophysical journal. Letters.

[49]  J. Kneib,et al.  Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens , 2017, 1706.10279.

[50]  R. Bouwens,et al.  Rotation in [C ii]-emitting gas in two galaxies at a redshift of 6.8 , 2017, Nature.

[51]  H. Ebeling,et al.  Science from a glimpse: Hubble SNAPshot observations of massive galaxy clusters , 2017, Monthly Notices of the Royal Astronomical Society.

[52]  S. Charlot,et al.  Ultraviolet spectra of extreme nearby star-forming regions – approaching a local reference sample for JWST , 2017, 1706.00881.

[53]  D. Spergel,et al.  Planck Sunyaev–Zel’dovich cluster mass calibration using Hyper Suprime-Cam weak lensing , 2017, 1706.00434.

[54]  O. Lahav,et al.  CLASH: accurate photometric redshifts with 14 HST bands in massive galaxy cluster cores , 2017, 1705.02265.

[55]  J. Puschnig,et al.  The Lyman continuum escape and ISM properties in Tololo 1247-232 - new insights from HST and VLA ★ , 2017, 1704.05943.

[56]  C. Giocoli,et al.  Hubble Frontier Fields : systematic errors in strong lensing models of galaxy clusters – implications for cosmography. , 2017, 1704.05380.

[57]  T. Schrabback,et al.  Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionization , 2017, Nature Astronomy.

[58]  R. Ellis,et al.  Dust in the Reionization Era: ALMA Observations of a z = 8.38 Gravitationally Lensed Galaxy , 2017, 1703.02039.

[59]  M. Oguri,et al.  Full-data Results of Hubble Frontier Fields: UV Luminosity Functions at z ∼ 6–10 and a Consistent Picture of Cosmic Reionization , 2017, 1702.04867.

[60]  M. Nonino,et al.  A Very Large (θE ≳ 40″) Strong Gravitational Lens Selected with the Sunyaev–Zel’dovich Effect: PLCK G287.0+32.9 (z = 0.38) , 2017, 1702.05090.

[61]  T. Treu,et al.  The Grism Lens-Amplified Survey from Space (GLASS). XI. Detection of C iv in Multiple Images of the z = 6.11 Lyα Emitter behind RXC J2248.7–4431 , 2017, 1702.04731.

[62]  D. Wittman,et al.  The Mismeasure of Mergers: Revised Limits on Self-interacting Dark Matter in Merging Galaxy Clusters , 2017, The Astrophysical Journal.

[63]  A. Fontana,et al.  Extended ionised and clumpy gas in a normal galaxy at z=7.1 revealed by ALMA , 2017, 1701.03468.

[64]  A. Coil,et al.  C iii] Emission in Star-forming Galaxies at z ∼ 1 , 2016, 1612.06866.

[65]  J. Kollmeier,et al.  Evidence for a Hard Ionizing Spectrum from a z = 6.11 Stellar Population , 2016, 1611.07125.

[66]  D. Stark Galaxies in the First Billion Years After the Big Bang , 2016 .

[67]  K. Sharon,et al.  THE SYSTEMATICS OF STRONG LENS MODELING QUANTIFIED: THE EFFECTS OF CONSTRAINT SELECTION AND REDSHIFT INFORMATION ON MAGNIFICATION, MASS, AND MULTIPLE IMAGE PREDICTABILITY , 2016, 1608.08713.

[68]  J. Diego,et al.  GEOMETRIC CORROBORATION OF THE EARLIEST LENSED GALAXY AT z ≃ 10.8 FROM ROBUST FREE-FORM MODELLING , 2016, 1608.06942.

[69]  J. Bartlett,et al.  Calibrating the Planck Cluster Mass Scale with CLASH , 2016, 1608.05356.

[70]  R. Bouwens,et al.  RELICS Discovery of a Probable Lens-magnified SN behind Galaxy Cluster Abell 1763 , 2016 .

[71]  N. Yoshida,et al.  Detection of an oxygen emission line from a high-redshift galaxy in the reionization epoch , 2016, Science.

[72]  M. Meneghetti,et al.  The Frontier Fields lens modelling comparison project , 2016, 1606.04548.

[73]  R. Bouwens,et al.  Lyα and C iii] emission in z = 7–9 Galaxies: accelerated reionization around luminous star-forming systems? , 2016, 1606.01304.

[74]  Brian Siana,et al.  Q1549-C25: A CLEAN SOURCE OF LYMAN-CONTINUUM EMISSION AT z = 3.15 , 2016, 1606.00443.

[75]  J. Anderson,et al.  The Frontier Fields: Survey Design and Initial Results , 2016, 1605.06567.

[76]  B. Hilbert,et al.  The Frontier Fields: Survey Design , 2016 .

[77]  C. A. Oxborrow,et al.  Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth , 2016, 1605.02985.

[78]  S. Finkelstein,et al.  Directly Observing the Galaxies Likely Responsible for Reionization , 2016, 1604.06799.

[79]  C. Leitherer,et al.  DIRECT DETECTION OF LYMAN CONTINUUM ESCAPE FROM LOCAL STARBURST GALAXIES WITH THE COSMIC ORIGINS SPECTROGRAPH , 2016, 1603.06779.

[80]  M. Sereno,et al.  CoMaLit-V. Mass forecasting with proxies. Method and application to weak lensing calibrated samples , 2016, 1603.06581.

[81]  R. Bouwens,et al.  A REMARKABLY LUMINOUS GALAXY AT Z = 11.1 MEASURED WITH HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY , 2016, 1603.00461.

[82]  J. Dunlop,et al.  The z = 9-10 galaxy population in the Hubble Frontier Fields and CLASH surveys: the z = 9 luminosity function and further evidence for a smooth decline in ultraviolet luminosity density at z≥ 8 , 2016, 1602.05199.

[83]  B. Weiner,et al.  SN REFSDAL: PHOTOMETRY AND TIME DELAY MEASUREMENTS OF THE FIRST EINSTEIN CROSS SUPERNOVA , 2015, 1512.05734.

[84]  R. Bouwens,et al.  BRIGHT GALAXIES AT HUBBLE’S REDSHIFT DETECTION FRONTIER: PRELIMINARY RESULTS AND DESIGN FROM THE REDSHIFT z ∼ 9–10 BoRG PURE-PARALLEL HST SURVEY , 2015, 1512.05363.

[85]  M. Nonino,et al.  DEJA VU ALL OVER AGAIN: THE REAPPEARANCE OF SUPERNOVA REFSDAL , 2015, 1512.04654.

[86]  S. Finkelstein,et al.  Observational Searches for Star-Forming Galaxies at z > 6 , 2015, Publications of the Astronomical Society of Australia.

[87]  A. Fontana,et al.  THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). III. A CENSUS OF Lyα EMISSION AT z ≳ 7 ?> FROM HST SPECTROSCOPY , 2015, 1511.04205.

[88]  A. Finoguenov,et al.  LoCuSS: Testing hydrostatic equilibrium in galaxy clusters , 2015, 1511.01919.

[89]  J. Diego,et al.  YOUNG GALAXY CANDIDATES IN THE HUBBLE FRONTIER FIELDS. II. MACS J0416–2403 , 2015, 1510.07084.

[90]  J. Diego,et al.  “REFSDAL” MEETS POPPER: COMPARING PREDICTIONS OF THE RE-APPEARANCE OF THE MULTIPLY IMAGED SUPERNOVA BEHIND MACSJ1149.5+2223 , 2015, 1510.05750.

[91]  H. Dahle,et al.  C III] EMISSION IN STAR-FORMING GALAXIES NEAR AND FAR , 2015, 1510.02542.

[92]  J. Hjorth,et al.  RELICS: Discovery of a Probable SN in Galaxy Cluster MACSJ0949.8+1708 , 2015 .

[93]  Edward J. Wollack,et al.  Weak-lensing mass calibration of the Atacama Cosmology Telescope equatorial Sunyaev-Zeldovich cluster sample with the Canada-France-Hawaii telescope stripe 82 survey , 2015, 1509.08930.

[94]  Adam G. Riess,et al.  THE RATE OF CORE COLLAPSE SUPERNOVAE TO REDSHIFT 2.5 FROM THE CANDELS AND CLASH SUPERNOVA SURVEYS , 2015, 1509.06574.

[95]  A. Fontana,et al.  THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). I. SURVEY OVERVIEW AND FIRST DATA RELEASE , 2015, 1509.00475.

[96]  M. Postman,et al.  CLASH: JOINT ANALYSIS OF STRONG-LENSING, WEAK-LENSING SHEAR, AND MAGNIFICATION DATA FOR 20 GALAXY CLUSTERS , 2015, 1507.04385.

[97]  R. Bouwens,et al.  Lyα EMISSION FROM A LUMINOUS z = 8.68 GALAXY: IMPLICATIONS FOR GALAXIES AS TRACERS OF COSMIC REIONIZATION , 2015, 1507.02679.

[98]  J. Richard,et al.  A systematic search for lensed high-redshift galaxies in HST images of MACS clusters , 2015, 1506.08249.

[99]  R. Bouwens,et al.  z ≳ 7 GALAXIES WITH RED SPITZER/IRAC [3.6]–[4.5] COLORS IN THE FULL CANDELS DATA SET: THE BRIGHTEST-KNOWN GALAXIES AT z ∼ 7–9 AND A PROBABLE SPECTROSCOPIC CONFIRMATION AT z = 7.48 , 2015, 1506.00854.

[100]  M. Meneghetti,et al.  ILLUMINATING A DARK LENS: A TYPE Ia SUPERNOVA MAGNIFIED BY THE FRONTIER FIELDS GALAXY CLUSTER ABELL 2744 , 2015, 1505.06211.

[101]  S. Derriere,et al.  T-PHOT: A new code for PSF-matched, prior-based, multiwavelength extragalactic deconfusion photometry , 2015, 1505.02516.

[102]  S. Ravindranath,et al.  UVUDF: ULTRAVIOLET THROUGH NEAR-INFRARED CATALOG AND PHOTOMETRIC REDSHIFTS OF GALAXIES IN THE HUBBLE ULTRA DEEP FIELD , 2015, 1505.01160.

[103]  C. A. Oxborrow,et al.  Planck intermediate results XXXVI. Optical identification and redshifts of Planck SZ sources with telescopes at the Canary Islands observatories: XXXVI. Optical identification and redshifts ofPlanckSZ sources with telescopes at the Canary Islands observatories , 2015, 1504.04583.

[104]  Jr.,et al.  SPITZER ULTRA FAINT SURVEY PROGRAM (SURFS UP). II. IRAC-DETECTED LYMAN-BREAK GALAXIES AT 6 ≲ z ≲ 10 BEHIND STRONG-LENSING CLUSTERS , 2015, 1504.02099.

[105]  David Harvey,et al.  The nongravitational interactions of dark matter in colliding galaxy clusters , 2015, Science.

[106]  O. Ilbert,et al.  The Interstellar Medium In Galaxies Seen A Billion Years After The Big Bang , 2015, 1503.07596.

[107]  D. Watson,et al.  A dusty, normal galaxy in the epoch of reionization , 2015, Nature.

[108]  R. Bouwens,et al.  NOT IN OUR BACKYARD: SPECTROSCOPIC SUPPORT FOR THE CLASH z = 11 CANDIDATE MACS 0647-JD , 2015, 1502.05681.

[109]  M. Franx,et al.  A SPECTROSCOPIC REDSHIFT MEASUREMENT FOR A LUMINOUS LYMAN BREAK GALAXY AT z = 7.730 USING KECK/MOSFIRE , 2015, 1502.05399.

[110]  H. Hoekstra,et al.  The Canadian Cluster Comparison Project: detailed study of systematics and updated weak lensing masses , 2015, 1502.01883.

[111]  Edinburgh,et al.  COSMIC REIONIZATION AND EARLY STAR-FORMING GALAXIES: A JOINT ANALYSIS OF NEW CONSTRAINTS FROM PLANCK AND THE HUBBLE SPACE TELESCOPE , 2015, 1502.02024.

[112]  S. Seitz,et al.  Cosmic variance of the galaxy cluster weak lensing signal , 2015, 1501.01632.

[113]  A. Fontana,et al.  Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens , 2014, Science.

[114]  M. Meneghetti,et al.  HUBBLE SPACE TELESCOPE COMBINED STRONG AND WEAK LENSING ANALYSIS OF THE CLASH SAMPLE: MASS AND MAGNIFICATION MODELS AND SYSTEMATIC UNCERTAINTIES , 2014, 1411.1414.

[115]  M. Sereno CoMaLit – III. Literature catalogues of weak lensing clusters of galaxies (LC$^2$) , 2014, 1409.5435.

[116]  Adrian T. Lee,et al.  GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV–ZEL'DOVICH EFFECT IN THE 2500-SQUARE-DEGREE SPT-SZ SURVEY , 2014, 1409.0850.

[117]  B. Robertson,et al.  Spectroscopic detections of C iii] λ1909 Å at z ≃ 6–7: a new probe of early star-forming galaxies and cosmic reionization , 2014, 1408.3649.

[118]  B. Milvang-Jensen,et al.  Ultraviolet emission lines in young low-mass galaxies at z ≃ 2: physical properties and implications for studies at z > 7 , 2014, 1408.1420.

[119]  J. Diego,et al.  A GEOMETRICALLY SUPPORTED z ∼ 10 CANDIDATE MULTIPLY IMAGED BY THE HUBBLE FRONTIER FIELDS CLUSTER A2744 , 2014, 1407.3769.

[120]  L. Moustakas,et al.  GALAXY CLUSTER SCALING RELATIONS BETWEEN BOLOCAM SUNYAEV–ZEL’DOVICH EFFECT AND CHANDRA X-RAY MEASUREMENTS , 2014, 1406.2800.

[121]  A. Koekemoer,et al.  RAPID DECLINE OF Lyα EMISSION TOWARD THE REIONIZATION ERA , 2014, 1405.4869.

[122]  D. Coe,et al.  LENS MODELS AND MAGNIFICATION MAPS OF THE SIX HUBBLE FRONTIER FIELDS CLUSTERS , 2014, 1405.0222.

[123]  D. Coe,et al.  FRONTIER FIELDS: HIGH-REDSHIFT PREDICTIONS AND EARLY RESULTS , 2014, 1405.0011.

[124]  N. Konidaris,et al.  LINE-EMITTING GALAXIES BEYOND A REDSHIFT OF 7: AN IMPROVED METHOD FOR ESTIMATING THE EVOLVING NEUTRALITY OF THE INTERGALACTIC MEDIUM , 2014, 1404.4632.

[125]  M. Meneghetti,et al.  CLASH: WEAK-LENSING SHEAR-AND-MAGNIFICATION ANALYSIS OF 20 GALAXY CLUSTERS , 2014, 1404.1375.

[126]  T. Schrabback,et al.  MEASURING THE STELLAR MASSES OF z ∼ 7 GALAXIES WITH THE SPITZER ULTRAFAINT SURVEY PROGRAM (SURFS UP) , 2014, 1404.0316.

[127]  M. Franx,et al.  UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.

[128]  E. Pellegrini,et al.  The applicability of far-infrared fine-structure lines as star formation rate tracers over wide ranges of metallicities and galaxy types , 2014, 1402.4075.

[129]  Bonn,et al.  Robust weak-lensing mass calibration of Planck galaxy clusters , 2014, 1402.2670.

[130]  T. Schrabback,et al.  SPITZER ULTRA FAINT SURVEY PROGRAM (SURFS UP). I. AN OVERVIEW , 2014, 1402.2352.

[131]  David O. Jones,et al.  TYPE Ia SUPERNOVA RATE MEASUREMENTS TO REDSHIFT 2.5 FROM CANDELS: SEARCHING FOR PROMPT EXPLOSIONS IN THE EARLY UNIVERSE , 2014, 1401.7978.

[132]  I. Hook,et al.  Lensed Type Ia supernovae as probes of cluster mass models , 2013, 1312.2576.

[133]  N. Yoshida,et al.  ALMA WILL DETERMINE THE SPECTROSCOPIC REDSHIFT z > 8 WITH FIR [O iii] EMISSION LINES , 2013, 1312.0684.

[134]  David O. Jones,et al.  THREE GRAVITATIONALLY LENSED SUPERNOVAE BEHIND CLASH GALAXY CLUSTERS , 2013, 1312.0943.

[135]  S. B. Cenko,et al.  TYPE-Ia SUPERNOVA RATES TO REDSHIFT 2.4 FROM CLASH: THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE , 2013, 1310.3495.

[136]  M. L. N. Ashby,et al.  THE MOST LUMINOUS z ∼ 9–10 GALAXY CANDIDATES YET FOUND: THE LUMINOSITY FUNCTION, COSMIC STAR-FORMATION RATE, AND THE FIRST MASS DENSITY ESTIMATE AT 500 Myr , 2013, 1309.2280.

[137]  T.Treu,et al.  The changing Lya optical depth in the range 6 , 2013, 1308.5985.

[138]  M. Donahue,et al.  CLASH: A CENSUS OF MAGNIFIED STAR-FORMING GALAXIES AT z ∼ 6–8 , 2013, 1308.1692.

[139]  D. Hogg,et al.  A NEW APPROACH TO IDENTIFYING THE MOST POWERFUL GRAVITATIONAL LENSING TELESCOPES , 2013, 1304.3127.

[140]  G. W. Pratt,et al.  Planck2013 results. XXIX. ThePlanckcatalogue of Sunyaev-Zeldovich sources , 2013, Astronomy & Astrophysics.

[141]  W. Burgett,et al.  X-ray selected galaxy clusters in the Pan-STARRS Medium Deep Survey , 2013, 1303.0555.

[142]  David N. Spergel,et al.  The Atacama Cosmology Telescope: Sunyaev-Zel'dovich selected galaxy clusters at 148 GHz from three seasons of data , 2013, 1301.0816.

[143]  R. Bouwens,et al.  CLASH: THREE STRONGLY LENSED IMAGES OF A CANDIDATE z ≈ 11 GALAXY , 2012, 1211.3663.

[144]  O. Lahav,et al.  A CENSUS OF STAR-FORMING GALAXIES IN THE Z ∼ 9–10 UNIVERSE BASED ON HST+SPITZER OBSERVATIONS OVER 19 CLASH CLUSTERS: THREE CANDIDATE Z ∼ 9–10 GALAXIES AND IMPROVED CONSTRAINTS ON THE STAR FORMATION RATE DENSITY AT Z ∼ 9.2 , 2012, 1211.2230.

[145]  J. Richard,et al.  The three-dimensional geometry and merger history of the massive galaxy cluster MACS J0358.8−2955 , 2012, 1209.2492.

[146]  H. Rottgering,et al.  The “toothbrush-relic”: evidence for a coherent linear 2-Mpc scale shock wave in a massive merging galaxy cluster? , 2012, 1209.2196.

[147]  D. Burke,et al.  Weighing the Giants – III. Methods and measurements of accurate galaxy cluster weak-lensing masses , 2012, 1208.0605.

[148]  R. Blandford,et al.  Weighing the Giants - I. Weak-lensing masses for 51 massive galaxy clusters: project overview, data analysis methods and cluster images , 2012, 1208.0597.

[149]  A. Fontana,et al.  SPECTROSCOPIC CONFIRMATION OF A z = 6.740 GALAXY BEHIND THE BULLET CLUSTER , 2012, 1207.5516.

[150]  S. Gonzaga,et al.  The DrizzlePac Handbook , 2012 .

[151]  R. Bouwens,et al.  THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: CONSTRAINTS ON THE BRIGHT END OF THE z ∼ 8 LUMINOSITY FUNCTION , 2012, 1204.3641.

[152]  T. Lauer,et al.  A highly magnified candidate for a young galaxy seen when the Universe was 500 Myrs old , 2012, 1204.2305.

[153]  P. Marshall,et al.  A WEAK-LENSING AND NEAR-INFRARED STUDY OF A3192: DISASSEMBLING A RICHNESS CLASS 3 ABELL CLUSTER , 2012 .

[154]  J. Han,et al.  A CATALOG OF 132,684 CLUSTERS OF GALAXIES IDENTIFIED FROM SLOAN DIGITAL SKY SURVEY III , 2012, 1202.6424.

[155]  B. Koester,et al.  SOURCE-PLANE RECONSTRUCTION OF THE BRIGHT LENSED GALAXY RCSGA 032727-132609 , 2012, 1202.0539.

[156]  Jean-Paul Kneib,et al.  Cluster lenses , 2012, 1202.0185.

[157]  Michael J. Kurtz,et al.  CLASH: PRECISE NEW CONSTRAINTS ON THE MASS PROFILE OF THE GALAXY CLUSTER A2261 , 2012, 1201.1616.

[158]  M. Meneghetti,et al.  Lensing and x-ray mass estimates of clusters (simulations) , 2012, 1201.1569.

[159]  A. Mann,et al.  X-ray–optical classification of cluster mergers and the evolution of the cluster merger fraction , 2011, 1111.2396.

[160]  D. Wittman,et al.  DISCOVERY OF A DISSOCIATIVE GALAXY CLUSTER MERGER WITH LARGE PHYSICAL SEPARATION , 2011, 1110.4391.

[161]  M. Franx,et al.  UV-CONTINUUM SLOPES AT z  ∼  4–7 FROM THE HUDF09+ERS+CANDELS OBSERVATIONS: DISCOVERY OF A WELL-DEFINED UV COLOR–MAGNITUDE RELATIONSHIP FOR z ⩾ 4 STAR-FORMING GALAXIES , 2011, 1109.0994.

[162]  O. Lahav,et al.  THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW , 2011, 1106.3328.

[163]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[164]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[165]  T. Broadhurst,et al.  CLUSTER MASS PROFILES FROM A BAYESIAN ANALYSIS OF WEAK-LENSING DISTORTION AND MAGNIFICATION MEASUREMENTS: APPLICATIONS TO SUBARU DATA , 2010, 1011.3044.

[166]  D. Benford,et al.  A 158 μm [C ii] LINE SURVEY OF GALAXIES AT z ∼ 1–2: AN INDICATOR OF STAR FORMATION IN THE EARLY UNIVERSE , 2010, 1009.4216.

[167]  D. Gerdes,et al.  PHAT: PHoto-z Accuracy Testing , 2010, 1008.0658.

[168]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[169]  G. W. Pratt,et al.  The MCXC: a meta-catalogue of x-ray detected clusters of galaxies , 2010, 1007.1916.

[170]  C. Steidel,et al.  PHYSICAL CONDITIONS IN A YOUNG, UNREDDENED, LOW-METALLICITY GALAXY AT HIGH REDSHIFT , 2010, 1006.5456.

[171]  M. Oguri The Mass Distribution of SDSS J1004$+$4112 Revisited , 2010, 1005.3103.

[172]  A. Edge,et al.  The X-ray brightest clusters of galaxies from the Massive Cluster Survey , 2010, 1004.4683.

[173]  Richard S. Ellis,et al.  Keck spectroscopy of faint 3 < z < 7 Lyman break galaxies – I. New constraints on cosmic reionization from the luminosity and redshift-dependent fraction of Lyman α emission , 2010, 1003.5244.

[174]  M. Meneghetti,et al.  Strong lensing in the MARENOSTRUM UNIVERSE - I. Biases in the cluster lens population , 2010, 1003.4544.

[175]  A. Schwope,et al.  ARCRAIDER II: Arc search in a sample of non-Abell clusters ? , 2010, 1001.3521.

[176]  Hawaii,et al.  The Observed Growth of Massive Galaxy Clusters II: X-ray Scaling Relations , 2009, 0909.3099.

[177]  D. Coe,et al.  New Multiply-Lensed Galaxies Identified in ACS/NIC3 Observations of Cl0024+1654, Using an Improved Mass Model , 2009, 0902.3971.

[178]  J. Kneib,et al.  Multiscale cluster lens mass mapping - I. Strong lensing modelling , 2009, 0901.3792.

[179]  S. Wuyts,et al.  FIREWORKS U38-to-24 μm Photometry of the GOODS Chandra Deep Field-South: Multiwavelength Catalog and Total Infrared Properties of Distant Ks-selected Galaxies , 2008 .

[180]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[181]  Edinburgh,et al.  Revealing the Properties of Dark Matter in the Merging Cluster MACS J0025.4–1222 , 2008, 0806.2320.

[182]  G. Helou,et al.  A Compendium of Far-Infrared Line and Continuum Emission for 227 Galaxies Observed by the Infrared Space Observatory , 2008, 0805.2930.

[183]  M. Franx,et al.  Discovery of a Very Bright Strongly Lensed Galaxy Candidate at z ≈ 7.6 , 2007, 0802.2506.

[184]  Anthony H. Gonzalez,et al.  Constraints on the Self-Interaction Cross Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657–56 , 2007, 0704.0261.

[185]  A. Edge,et al.  A Complete Sample of 12 Very X-Ray Luminous Galaxy Clusters at z > 0.5 , 2007, astro-ph/0703394.

[186]  D. Nagai,et al.  Testing X-Ray Measurements of Galaxy Clusters with Cosmological Simulations , 2006, astro-ph/0609247.

[187]  D. Clowe,et al.  A Direct Empirical Proof of the Existence of Dark Matter , 2006, astro-ph/0608407.

[188]  Tucson,et al.  Strong and Weak Lensing United. III. Measuring the Mass Distribution of the Merging Galaxy Cluster 1ES 0657–558 , 2006, astro-ph/0608408.

[189]  R. Bouwens,et al.  Galaxies in the Hubble Ultra Deep Field. I. Detection, Multiband Photometry, Photometric Redshifts, and Morphology , 2006, astro-ph/0605262.

[190]  D. Kocevski,et al.  Mapping Large-Scale Structures Behind the Galactic Plane: The Second CIZA Subsample , 2005, astro-ph/0512321.

[191]  W. Vacca,et al.  “The Mauna Kea Observatories Near‐Infrared Filter Set. III. Isophotal Wavelengths and Absolute Calibration” (PASP, 117, 421 [2005]) , 2005, astro-ph/0502120.

[192]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[193]  H. Ebeling,et al.  A Systematic X-Ray Search for Clusters of Galaxies behind the Milky Way , 2002 .

[194]  A. Edge,et al.  MACS: A Quest for the Most Massive Galaxy Clusters in the Universe , 2000, astro-ph/0009101.

[195]  J. Huchra,et al.  The ROSAT Brightest Cluster Sample - IV. The extended sample , 2000, astro-ph/0003191.

[196]  M. Malkan,et al.  The WARPS Survey. III. The Discovery of an X-Ray Luminous Galaxy Cluster at z = 0.833 and the Impact of X-Ray Substructure on Cluster Abundance Measurements , 1999, astro-ph/9905321.

[197]  J. P. Huchra,et al.  The ROSAT Brightest Cluster Sample — I. The compilation of the sample and the cluster log N—log S distribution , 1998, astro-ph/9812394.

[198]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[199]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[200]  Michael W. Werner,et al.  Infrared Space Observatory Measurements of [C II] Line Variations in Galaxies , 1997 .

[201]  D. Kelson,et al.  A Pair of Lensed Galaxies at z = 4.92 in the Field of CL 1358+62 , 1997, astro-ph/9704090.

[202]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[203]  I. Smail,et al.  Hubble Space Telescope Observations of the Lensing Cluster Abell 2218 , 1995, astro-ph/9511015.

[204]  A. Taylor,et al.  Mapping cluster mass distributions via gravitational lensing of background galaxies , 1994, astro-ph/9406052.

[205]  R. Schild,et al.  The Einstein Observatory Extended Medium-Sensitivity Survey. I - X-ray data and analysis , 1990 .

[206]  G. Abell,et al.  A Catalog of Rich Clusters of Galaxies , 1989 .

[207]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[208]  J. B. Oke Absolute spectral energy distributions for white dwarfs , 1974 .

[209]  Y. Zeldovich,et al.  Small-scale fluctuations of relic radiation , 1970, Astrophysics and Space Science.

[210]  G. Abell The Distribution of rich clusters of galaxies , 1958 .

[211]  C. A. Oxborrow,et al.  Planck 2015 results Special feature Planck 2015 results XXVII . The second Planck catalogue of Sunyaev-Zeldovich sources , 2016 .

[212]  C. A. Oxborrow,et al.  Planck 2015 results Special feature Planck 2015 results XXIV . Cosmology from Sunyaev-Zeldovich cluster counts , 2016 .

[213]  R. B. Barreiro,et al.  Planck early results Special feature Planck early results . XI . Calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations , 2011 .

[214]  Richard N. Hook,et al.  MultiDrizzle: An Integrated Pyraf Script for Registering, Cleaning and Combining Images , 2003 .

[215]  S. Arribas,et al.  The 2002 HST Calibration Workshop, Hubble after the installation of the ACS and the NICMOS cooling system : proceedings of a workshop held at the Space Telescope Science Institute, Baltimore, Maryland, October 17 and 18, 2002 , 2002 .