H I Narrow Self-Absorption in Dark Clouds

We have used the Arecibo telescope to carry out a survey of 31 dark clouds in the Taurus/Perseus region for narrow absorption features in H I (21 cm) and OH (1667 and 1665 MHz) emission. We detected H I narrow self-absorption (HINSA) in 77% of the clouds that we observed. HINSA and OH emission, observed simultaneously, are remarkably well correlated. Spectrally, they have the same nonthermal line width and the same line centroid velocity. Spatially, they both peak at the optically selected central position of each cloud, and both fall off toward the cloud edges. Sources with clear HINSA features have also been observed in transitions of CO, 13CO, C18O, and C I. HINSA exhibits better correlation with molecular tracers than with C I. The line width of the absorption feature, together with analyses of the relevant radiative transfer, provides upper limits to the kinetic temperature of the gas producing the HINSA. Some sources must have a temperature close to or lower than 10 K. The correlation of column densities and line widths of HINSA with those characteristics of molecular tracers suggests that a significant fraction of the atomic hydrogen is located in the cold, well-shielded portions of molecular clouds and is mixed with the molecular gas. The average number density ratio [H I]/[H2] is 1.5 × 10-3. The inferred H I density appears consistent with, but slightly higher than, the value expected in steady state equilibrium between formation of H I via cosmic-ray destruction of H2 and destruction via formation of H2 on grain surfaces. The distribution and abundance of atomic hydrogen in molecular clouds are critical tests of dark cloud chemistry and structure, including the issues of grain surface reaction rates, PDRs, circulation, and turbulent diffusion.

[1]  J. P. Wild The Radio-Frequency Line Spectrum of Atomic Hydrogen and its Applications in Astronomy. , 1952 .

[2]  George B. Field,et al.  Influence of Collisions upon Population of Hyperfine States in Hydrogen. , 1956 .

[3]  S. Goldstein Radio Astronomy , 1957, Nature.

[4]  George B. Field,et al.  Excitation of the Hydrogen 21-CM Line , 1958, Proceedings of the IRE.

[5]  B. T. Lynds Catalogue of Dark Nebulae. , 1962 .

[6]  A. C. Allison,et al.  SPIN CHANGE IN COLLISIONS OF HYDROGEN ATOMS. , 1969 .

[7]  E. Salpeter,et al.  Surface Adsorption of Light Gas Atoms , 1970 .

[8]  Edwin E. Salpeter,et al.  Surface recombination of hydrogen molecules , 1971 .

[9]  M. Werner,et al.  Low-energy cosmic rays and the abundance of atomic hydrogen in dark clouds , 1971 .

[10]  B. Turner NONTHERMAL OH EMISSION IN INTERSTELLAR DUST CLOUDS. , 1971 .

[11]  E. Salpeter,et al.  Molecular Hydrogen in H i Regions , 1971 .

[12]  G. Knapp,et al.  OH observations of 16 interstellar dust clouds , 1973 .

[13]  G. Knapp Observations of HI in dense interstellar dust clouds: I. A survey of 88 clouds , 1974 .

[14]  Kenneth I. Kellermann,et al.  Galactic and Extragalactic Radio Astronomy , 1974 .

[15]  A. Winnberg,et al.  Atomic and molecular observations of the Rho Ophiuchi dark cloud , 1978 .

[16]  Observations of the 21-cm line in dark clouds , 1978 .

[17]  W. B. Burton,et al.  Atomic hydrogen in galactic molecular clouds. , 1978 .

[18]  Thomas G. Phillips,et al.  Detection of the 610 micron /492 GHz/ line of interstellar atomic carbon , 1980 .

[19]  Analysis and interpretation of H I self-absorption lines. I , 1980 .

[20]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[21]  R. Snell A study of the nine interstellar dark clouds , 1981 .

[22]  R. Wilson,et al.  PHYSICAL CONDITIONS AND CARBON-MONOXIDE ABUNDANCE IN THE DARK CLOUD B5 , 1982 .

[23]  R. Wilson,et al.  The relationship between carbon monoxide abundance and visual extinction in interstellar clouds. , 1982 .

[24]  S. Lichten,et al.  Warm H I Halos around molecular clouds , 1983 .

[25]  A survey of the latitude structure of galactic HI on small angular scales , 1984 .

[26]  F. Lockman,et al.  The H I halo in the inner galaxy , 1984 .

[27]  Alyssa A. Goodman,et al.  Measurement of Magnetic Field Strength in the Dark Cloud Barnard 1 , 1989 .

[28]  Warm neutral halos around molecular clouds. II - H I and CO (J = 1-0) observations , 1991 .

[29]  V. Buch,et al.  Sticking Probability of H and D Atoms on Amorphous Ice: A Computational Study , 1991 .

[30]  M. Morris,et al.  Warm neutral halos around molecular clouds. III - Interpretation of H I and CO J = 1-0 data , 1991 .

[31]  A. Tielens,et al.  CO(J = 1-0) line emission from giant molecular clouds , 1993 .

[32]  T. Bania,et al.  Kinematic Distances of Galactic H II Regions from H i Absorption Studies , 1994 .

[33]  P. Andre',et al.  A submillimetre continuum survey of pre-protostellar cores , 1994 .

[34]  A. Goodman,et al.  THE MAGNETIC FIELD IN THE OPHIUCHUS DARK CLOUD COMPLEX , 1994 .

[35]  Studies of H I self-absorption in the Riegel & Crutcher cold cloud , 1995 .

[36]  P. Caselli,et al.  The Line Width--Size Relation in Massive Cloud Cores , 1995 .

[37]  E. Bergin,et al.  A Study of the Physics and Chemistry of TMC-1 , 1997, The Astrophysical journal.

[38]  A. Poglitsch,et al.  The Orion Molecular Clouds OMC-1 and OMC-2 Mapped in the Far-Infrared Fine-Structure Line Emission of C+ and O0 , 1997 .

[39]  P. Caselli,et al.  The Ionization Fraction in Dense Cloud Cores , 1998 .

[40]  K. Kraemer,et al.  [O I] 63 Micron Absorption in NGC 6334 , 1998 .

[41]  P. Caselli,et al.  L1544: A Starless Dense Core with Extended Inward Motions , 1998 .

[42]  A Catalog of Optically Selected Cores , 1999, astro-ph/9901175.

[43]  R. Wilson,et al.  Atomic Carbon Observations of Southern Hemisphere H II Regions , 1999 .

[44]  M. Harwit,et al.  Large-scale 13CO J = 5 → 4 and [C I] Mapping of Orion A , 2000 .

[45]  L. A. Higgs,et al.  A New View of Cold H I Clouds in the Milky Way , 2000 .

[46]  D. Lis,et al.  Atomic Oxygen Abundance in Molecular Clouds: Absorption toward Sagittarius B2 , 2001 .

[47]  A massive cloud of cold atomic hydrogen in the outer Galaxy , 2001, Nature.

[48]  New Temperatures of Diffuse Interstellar Gas: Thermally Unstable Gas , 2001, astro-ph/0103126.

[49]  P. Caselli,et al.  Molecular Ions in L1544. II. The Ionization Degree , 2001, astro-ph/0109023.

[50]  Molecular hydrogen formation in the interstellar medium , 2002, astro-ph/0207035.

[51]  M. Allen,et al.  H I: A Chemical Tracer of Turbulent Diffusion in Molecular Clouds , 2002 .

[52]  J. Jackson,et al.  H I Self-Absorption and the Kinematic Distance Ambiguity: The Case of the Molecular Cloud GRSMC 45.6+0.3 , 2002 .

[53]  E. Herbst,et al.  New models of interstellar gas–grain chemistry – I. Surface diffusion rates , 2002 .