Fish Inspired Biomimetic Ionic Polymer-Metal Composite Pectoral Fins Using Labriform Propulsion

In this article, we analyze and design ionic polymer metal composite (IPMC) underwater propulsors inspired from swimming of labriform fishes. The structural model of the IPMC fin accounts for the electromechanical dynamics of the bean in water. A quasi steady blade element model that accounts for unsteady phenomena, such as added mass effects, dynamic stall, and cumulative Wagner effect is used to estimate the hydrodynamic performance. Dynamic characteristics of IPMC actuated flapping fins having the same size as the actual fins of three different fish species, Gomphosus varius, Scarus frenatus, and Sthethojulis trilineata, are analyzed using numerical simulations.

[1]  K. Tsiakmakis,et al.  Model reference adaptive control for an ionic polymer metal composite in underwater applications , 2008 .

[2]  Xinyan Deng,et al.  Microautonomous Robotic Ostraciiform (MARCO): Hydrodynamics, Design, and Fabrication , 2008, IEEE Transactions on Robotics.

[3]  J. Reddy,et al.  An Efficient Continuum Damage Model and its Application to Shear Deformable Laminated Plates , 2005 .

[4]  Woosoon Yim,et al.  Ionic Polymer-metal Composites for Underwater Operation , 2007 .

[5]  Huosheng Hu,et al.  Design of 3D Swim Patterns for Autonomous Robotic Fish , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  J. Sader Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope , 1998 .

[7]  W. Yim,et al.  An artificial muscle actuator for biomimetic underwater propulsors , 2007, Bioinspiration & biomimetics.

[8]  In Lee,et al.  Shape Adaptive Airfoil Actuated by a Shape Memory Alloy and its Aerodynamic Characteristics , 2009 .

[9]  Sujoy Mukherjee,et al.  Electromechanical dynamics and optimization of pectoral fin–based ionic polymer–metal composite underwater propulsor , 2012 .

[10]  Kinji Asaka,et al.  Development of a Rajiform Swimming Robot using Ionic Polymer Artificial Muscles , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  E. Papadopoulos,et al.  On the Design of an Autonomous Robot Fish , 2003 .

[12]  K. Leang,et al.  Monolithic IPMC Fins for Propulsion and Maneuvering in Bioinspired Underwater Robotics , 2014, IEEE Journal of Oceanic Engineering.

[13]  J A Walker,et al.  Mechanical performance of aquatic rowing and flying , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[14]  T. Fukuda,et al.  Giant magnetostrictive alloy (GMA) applications to micro mobile robot as a micro actuator without power supply cables , 1991, [1991] Proceedings. IEEE Micro Electro Mechanical Systems.

[15]  K.M. Lynch,et al.  Mechanics and control of swimming: a review , 2004, IEEE Journal of Oceanic Engineering.

[16]  K. Abhishek An Autonomous Robotic Fish for Mobile Sensing , 2014 .

[17]  S. K. Dwivedy,et al.  Dynamic Modeling and Effect of Dehydration on Segmented IPMC Actuators Following Variable Parameter Pseudo-Rigid Body Modeling Technique , 2014 .

[18]  Wei Zhang,et al.  A Tripodic Biomimetic Underwater Microrobots Utilizing ICPF Actuators , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[19]  Maurizio Porfiri,et al.  Temporally-resolved hydrodynamics in the vicinity of a vibrating ionic polymer metal composite , 2010 .

[20]  William H. Nedderman,et al.  Low-Speed Maneuvering Hydrodynamics of Fish and Small Underwater Vehicles , 1997 .

[21]  Junzhi Yu,et al.  Development of a biomimetic robotic fish and its control algorithm , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[22]  Tao Tao,et al.  Bio-inspired actuating system for swimming using shape memory alloy composites , 2006, Int. J. Autom. Comput..

[23]  M. Dickinson,et al.  Wing rotation and the aerodynamic basis of insect flight. , 1999, Science.

[24]  Shuxiang Guo,et al.  Underwater Swimming Micro Robot Using IPMC Actuator , 2006, 2006 International Conference on Mechatronics and Automation.

[25]  Jianxun Wang,et al.  A dynamic model for tail-actuated robotic fish with drag coefficient adaptation , 2013 .

[26]  K. K. Leang,et al.  Integrated Sensing for IPMC Actuators Using Strain Gages for Underwater Applications , 2012, IEEE/ASME Transactions on Mechatronics.

[27]  I. Hunter,et al.  The Development of a Biologically Inspired Propulsor for Unmanned Underwater Vehicles , 2007, IEEE Journal of Oceanic Engineering.

[28]  Yuan-Cheng Fung,et al.  An introduction to the theory of aeroelasticity , 1955 .

[29]  Xinyan Deng,et al.  Experimental Studies on the Hydrodynamics of a Robotic Ostraciiform Tail Fin , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[30]  Kinji Asaka,et al.  A snake-like swimming robot using IPMC actuator/sensor , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[31]  Shuxiang Guo,et al.  IPMC actuator-sensor based a biomimetic underwater microrobot with 8 Legs , 2008, 2008 IEEE International Conference on Automation and Logistics.

[32]  Long Wang,et al.  A framework for biomimetic robot fish's design and its realization , 2005, Proceedings of the 2005, American Control Conference, 2005..

[33]  Michael S. Triantafyllou,et al.  Conceptual Design for the Construction of a Biorobotic AUV Based on Biological Hydrodynamics , 2022 .

[34]  Michael Sfakiotakis,et al.  Review of fish swimming modes for aquatic locomotion , 1999 .

[35]  Shuxiang Guo,et al.  A new type of fish-like underwater microrobot , 2003 .

[36]  Byungkyu Kim,et al.  A biomimetic undulatory tadpole robot using ionic polymer–metal composite actuators , 2005 .

[37]  Maurizio Porfiri,et al.  Hydrodynamics of underwater propulsors based on ionic polymer–metal composites: a numerical study , 2009 .

[38]  G.V. Lauder,et al.  Morphology and experimental hydrodynamics of fish fin control surfaces , 2004, IEEE Journal of Oceanic Engineering.

[39]  Dimitris C. Lagoudas,et al.  Development of a shape memory alloy actuated biomimetic vehicle , 2000 .

[40]  L. Fortuna,et al.  A model of ionic polymer–metal composite actuators in underwater operations , 2008 .

[41]  Shuxiang Guo,et al.  A new type of hybrid fish-like microrobot , 2006, Int. J. Autom. Comput..

[42]  P. W. Webb,et al.  Kinematics of Pectoral Fin Propulsion in Cymatogaster Aggregata , 1973 .

[43]  J. O. Simpson,et al.  Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles - a review , 1998 .

[44]  Xiaobo Tan,et al.  Modeling of Biomimetic Robotic Fish Propelled by An Ionic Polymer–Metal Composite Caudal Fin , 2010, IEEE/ASME Transactions on Mechatronics.

[45]  R. W. Blake,et al.  The Mechanics of Labriform Locomotion I. Labriform Locomotion in the Angelfish (Pterophyllum Eimekei): An Analysis of the Power Stroke , 1979 .

[46]  Xinyan Deng,et al.  Biomimetic Micro Underwater Vehicle with Oscillating Fin Propulsion: System Design and Force Measurement , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[47]  Huosheng Hu,et al.  Biologically inspired behaviour design for autonomous robotic fish , 2006, Int. J. Autom. Comput..

[48]  Sung-Hoon Ahn,et al.  A turtle-like swimming robot using a smart soft composite (SSC) structure , 2012 .

[49]  Kyu-Jin Cho,et al.  Kinematic Condition for Maximizing the Thrust of a Robotic Fish Using a Compliant Caudal Fin , 2012, IEEE Transactions on Robotics.

[50]  E. A. Socolsky,et al.  Electroactive Heterogeneous Polymers: Analysis and Applications to Laminated Composites , 2007 .

[51]  G. Gerlach,et al.  Modeling of Temperature-Sensitive Polyelectrolyte Gels by the Use of the Coupled Chemo-Electro-Mechanical Formulation , 2011 .

[52]  M. Porfiri,et al.  A Particle Image Velocimetry Study of Vibrating Ionic Polymer Metal Composites in Aqueous Environments , 2009, IEEE/ASME Transactions on Mechatronics.

[53]  Maurizio Porfiri,et al.  Energy harvesting from the tail beating of a carangiform swimmer using ionic polymer–metal composites , 2013, Bioinspiration & biomimetics.

[54]  Naomi Kato,et al.  Median and Paired Fin Controllers for Biomimetic Marine Vehicles , 2005 .

[55]  M. Triantafyllou,et al.  Hydrodynamics of Fishlike Swimming , 2000 .

[56]  Kristi A. Morgansen,et al.  Geometric Methods for Modeling and Control of Free-Swimming Fin-Actuated Underwater Vehicles , 2007, IEEE Transactions on Robotics.

[57]  Maurizio Porfiri,et al.  Free-Locomotion of Underwater Vehicles Actuated by Ionic Polymer Metal Composites , 2010, IEEE/ASME Transactions on Mechatronics.

[58]  Shuxiang Guo,et al.  A centimeter-scale autonomous robotic fish actuated by IPMC actuator , 2007, 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[59]  P.R. Bandyopadhyay,et al.  Trends in biorobotic autonomous undersea vehicles , 2005, IEEE Journal of Oceanic Engineering.

[60]  D. Lachat,et al.  BoxyBot: a swimming and crawling fish robot controlled by a central pattern generator , 2006, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006..

[61]  Woosoon Yim,et al.  Open-loop control of Ionic Polymer Metal Composite (IPMC) based underwater actuator using a network of neural oscillator , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[62]  J. Franklin,et al.  Electromechanical Modeling of Encapsulated Ionic Polymer Transducers , 2003 .

[63]  M. Westneat,et al.  Diversity of pectoral fin structure and function in fishes with labriform propulsion , 2005, Journal of morphology.