Practical limits of power transmission through single-mode chalcogenide fibers

Abstract. Beam confinement or “no free-space optics” via fiber transmission can achieve improved reliability, lower cost, and reduced component count for active sensing systems. For midinfrared delivery, mechanically robust chalcogenide (arsenic sulfide) single-mode fibers are of interest. A 12-μm core diameter fiber is shown to transport >10  W at 2053 nm, and a 25-μm core diameter fiber enables single-mode beam transport from a 4550-nm quantum cascade laser. As midinfrared sources continue to increase their output power capabilities, chalcogenide fibers will eventually be limited in their power-handling capacity due to optical nonlinearities or thermal failure. These limitations are discussed and analyzed in the context of single-mode chalcogenide fibers in order to provide a framework for power transmission limitations in various operating regimes.

[1]  E. M. Dianov,et al.  High-purity chalcogenide glasses for fiber optics , 2009 .

[2]  S. Dai,et al.  Fabrication of chalcogenide glass photonic crystal fibers with mechanical drilling , 2015 .

[3]  J Goldhar,et al.  Technique for measurement of the Raman gain coefficient in optical fibers. , 1996, Optics letters.

[4]  Walter J. Riker A Review of J , 2010 .

[5]  Matej Komanec,et al.  Multimode Chalcogenide Fibers for Evanescent Wave Sensing in the Mid-IR , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  Toshikuni Kaino,et al.  Third‐order nonlinear spectroscopy in As2S3 chalcogenide glass fibers , 1995 .

[7]  Michihiko Kitao,et al.  Brillouin-gain coefficients of chalcogenide glasses , 2004 .

[8]  Dong-Joon Lee,et al.  Third order cascaded Raman wavelength shifting in chalcogenide fibers , 2006, QELS 2006.

[9]  Arkadiy Lyakh,et al.  Progress in high-power continuous-wave quantum cascade lasers [Invited]. , 2017, Applied optics.

[10]  Olivier Sire,et al.  Chalcogenide optical fibers for mid-infrared sensing , 2014 .

[11]  Jasbinder S. Sanghera,et al.  Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications , 2009 .

[12]  Camille-Sophie Brès,et al.  Mid-infrared continuous-wave parametric amplification in chalcogenide microstructured fibers , 2017 .

[13]  M. Sauer,et al.  Stimulated Brillouin scattering in optical fibers , 2010 .

[14]  Réal Vallée,et al.  30  W fluoride glass all-fiber laser at 2.94  μm. , 2015, Optics letters.

[15]  HAH,et al.  High power single-mode delivery of mid-infrared sources through chalcogenide fiber , 2018 .

[16]  Youngjae Yoo,et al.  Thermal conductivity improvement of surface-enhanced polyetherimide (PEI) composites using polyimide-coated h-BN particles. , 2014, Physical chemistry chemical physics : PCCP.

[17]  J. Perry,et al.  Measurement of the Raman gain coefficient via inverse Raman scattering , 2013 .

[18]  S. Sujecki,et al.  Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr3+ doped chalcogenide fibre , 2016 .

[19]  Brandon Shaw,et al.  Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces. , 2010, Optics express.

[20]  Douglas S. Hobbs Laser damage threshold measurements of anti-reflection microstructures operating in the near UV and mid-infrared , 2010, Laser Damage.

[21]  Joshua Bradford,et al.  SBS Threshold Dependence on Pulse Duration in a 2053 nm Single-Mode Fiber Amplifier , 2017, Journal of Lightwave Technology.

[22]  Trevor M. Benson,et al.  Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics , 2015 .

[23]  Trevor M. Benson,et al.  Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre , 2014, Nature Photonics.

[24]  R. Smith Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering. , 1972, Applied optics.

[25]  Trevor M. Benson,et al.  Mid-infrared emission in Tb^3+-doped selenide glass fiber , 2017 .

[26]  Réal Vallée,et al.  5.6  W monolithic fiber laser at 3.55  μm. , 2017, Optics letters.

[27]  V. Nazabal,et al.  Infrared sulfide fibers for all-optical gas detection , 2018, OPTO.

[28]  I. V. Scripachev,et al.  Optical and Mechanical Characteristics of Fibers Made of Arsenic Chalcogenides , 2001 .

[29]  Valentin Gapontsev,et al.  Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  Manabu Taniwaki,et al.  Multihundred‐watt CO laser power delivery through chalcogenide glass fibers , 1992 .

[31]  Duk-Yong Choi,et al.  On-chip stimulated Brillouin scattering , 2010, 35th Australian Conference on Optical Fibre Technology.

[32]  Jasbinder S. Sanghera,et al.  Active and passive chalcogenide glass optical fibers for IR applications: a review , 1999 .

[33]  Francois Chenard,et al.  Mid-infrared chalcogenide fiber devices for medical applications , 2018, BiOS.

[34]  Martin Richardson,et al.  Robust multimaterial chalcogenide fibers produced by a hybrid fiber-fabrication process , 2017 .

[35]  M. Koptev,et al.  Development of As-Se tapered suspended-core fibers for ultra-broadband mid-IR wavelength conversion , 2017, 1705.02284.

[36]  Laurent Brilland,et al.  Casting method for producing low-loss chalcogenide microstructured optical fibers. , 2010, Optics express.