Msn-support Help

For polygons of fixed side lengths embedded in R3, a natural question is whether the embeddings are simply knot types, or there exist distinct embeddings of the same knot. This question was answered by J. Cantarella and H. Johnston [J. Knot Theory Ramifications 7 (1998), no. 8, 1027– 1039; MR1671500(99m:57002) ]. They showed that for some particular assignment of side lengths, there are three connected components corresponding to the unknot in Pol6(l1, l2, . . . , l6) (this notation is used for the space of embedding classes of polygons of 6 sides, where l1, l2, . . . , l6 are the lengths of the sides). Later, G. T. Toussaint [Beitr äge Algebra Geom. 42 (2001), no. 2, 301–306; MR1865519(2002k:57020) ] showed that there are two more classes for a different polygonal unknot with 6 sides (a hexagonal unknot). In this article, the authors consider the maximum number of embedding classes for the unknot, and show that there exists a hexagonal unknot with at least nine embedding classes.

[1]  S. Nollet,et al.  Mathematical Reviews , 1939, Nature.

[2]  W. Hahn Über Orthogonalpolynome, die q-Differenzengleichungen genügen , 1949 .

[3]  Richard Routley,et al.  Contingency and non-contingency bases for normal modal logics , 1966 .

[4]  R. Routley,et al.  Non-contingency axioms for S4 and S5 , 1968 .

[5]  Richard Routley,et al.  Modalities in a sequence of normal noncontingency modal systems , 1969 .

[6]  David Makinson,et al.  Some embedding theorems for modal logic , 1971, Notre Dame J. Formal Log..

[7]  G. T. Sallee Stretching chords of space curves , 1973 .

[8]  M. Ismail,et al.  The Associated Ultraspherical Polynomials and their q -Analogues , 1982, Canadian Journal of Mathematics.

[9]  G. Budworth The Knot Book , 1983 .

[10]  G. Andrews,et al.  Classical orthogonal polynomials , 1985 .

[11]  Leonidas J. Guibas,et al.  Arrangements of Curves in the Plane - Topology, Combinatorics, and Algorithms , 1988, ICALP.

[12]  Max J. Cresswell,et al.  Necessity and contingency , 1988, Stud Logica.

[13]  S. Suslov The theory of difference analogues of special functions of hypergeometric type , 1989 .

[14]  J. S. Dehesa,et al.  On orthogonal polynomials with perturbed recurrence relations , 1990 .

[15]  V. B. Uvarov,et al.  Classical Orthogonal Polynomials of a Discrete Variable , 1991 .

[16]  Micha Sharir,et al.  On the Zone Theorem for Hyperplane Arrangements , 1991, SIAM J. Comput..

[17]  K. Millett KNOTTING OF REGULAR POLYGONS IN 3-SPACE , 1994 .

[18]  A. Ronveaux,et al.  Upward Extension of the Jacobi Matrix for Orthogonal Polynomials , 1995, math/9510213.

[19]  Steven T. Kuhn Minimal Non-contingency Logic , 1995, Notre Dame J. Formal Log..

[20]  Sue Whitesides,et al.  Reconfiguring closed polygonal chains in Euclideand-space , 1995, Discret. Comput. Geom..

[21]  Lloyd Humberstone,et al.  The Logic of Non-contingency , 1995, Notre Dame J. Formal Log..

[22]  Rene F. Swarttouw,et al.  The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report Fac , 1996, math/9602214.

[23]  Polinomios ortogonales Q-semiclásicos , 1996 .

[24]  Erik D. Demaine,et al.  On reconfiguring tree linkages: Trees can lock , 1999, CCCG.

[25]  D.H.J. de Jongh,et al.  The logic of the provability , 1998 .

[26]  Jason H. Cantarella,et al.  NONTRIVIAL EMBEDDINGS OF POLYGONAL INTERVALS AND UNKNOTS IN 3-SPACE , 1998 .

[27]  M. Foupouagnigni Laguerre-Hahn Orthogonal Polynomials with Respect to the Hahn Operator: Fourth-order Difference Equa , 1998 .

[28]  G. Toussaint A New Class of Stuck Unknots in Pol6 , 1999 .

[29]  Joseph O'Rourke,et al.  Polygonal chains cannot lock in 4d , 1999, CCCG.

[30]  Erik D. Demaine,et al.  Locked and unlocked polygonal chains in 3D , 1998, SODA '99.

[31]  Günter Rote,et al.  Straightening polygonal arcs and convexifying polygonal cycles , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[32]  L. Kauffman An Introduction to Knot Theory , 2001 .

[33]  Fourth-order difference equation satisfied by the co-recursive of q -classical orthogonal polynomials , 2001 .

[34]  J. A. Calvo The embedding space of hexagonal knots , 2001 .

[35]  Erik D. Demaine,et al.  Reconfiguring convex polygons , 2001, Comput. Geom..

[36]  M. Foupouagnigni,et al.  The fourth-order difference equation satisfied by the associated orthogonal polynomials of the Dq-Laguerre - Hahn Class , 2001 .

[37]  Wolfram Koepf,et al.  Recurrence equations and their classical orthogonal polynomial solutions , 2002, Appl. Math. Comput..

[38]  A fourth order q-difference equation for associated discrete q-orthogonal polynomials , 2002 .

[39]  Mourad E. H. Ismail,et al.  Difference equations and quantized discriminants for q-orthogonal polynomials , 2003, Adv. Appl. Math..

[40]  M. Foupouagnignia,et al.  On Fourth-order Difference Equations for Orthogonal Polynomials of a Discrete Variable : Derivation , Factorization and Solutions , 2003 .