Analytic evaluation of energy gradients for the single and double excitation coupled cluster (CCSD) wave function: Theory and application

The theory for the analytic evaluation of energy gradients for coupled cluster (CC) wave functions is presented. In particular, explicit expressions for the analytic energy gradient of the CC singles and doubles (CCSD) wave function for a closed‐shell restricted Hartree–Fock reference determinant are presented and shown to scale as N6 where N is the one‐electron number of atomic basis functions for the molecular system. Thus analytic CCSD gradients are found to be of the same magnitude in computational cost as is the evaluation of analytic gradients for the configuration interaction singles and doubles (CISD) wave function. Applications of this method are presented for the water molecule and the formaldehyde molecule using a double‐ζ plus polarization (DZ+P) basis set. The CCSD equilibrium geometries, dipole moments, and, via finite differences of gradients, CCSD harmonic vibrational frequencies and infrared intensities are reported. For H2O these results are compared to analogous CISD, CISDT, CISDTQ, and...

[1]  Debashis Mukherjee,et al.  A response-function approach to the direct calculation of the transition-energy in a multiple-cluster expansion formalism , 1979 .

[2]  C. E. Dykstra,et al.  An electron pair operator approach to coupled cluster wave functions. Application to He2, Be2, and Mg2 and comparison with CEPA methods , 1981 .

[3]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[4]  D. Mukherjee,et al.  Application of cluster expansion techniques to open shells: Calculation of difference energies , 1984 .

[5]  Josef Paldus,et al.  Correlation problems in atomic and molecular systems III. Rederivation of the coupled-pair many-electron theory using the traditional quantum chemical methodst†‡§ , 1971 .

[6]  H. Schaefer,et al.  Analytic evaluation and basis set dependence of intensities of infrared spectra , 1986 .

[7]  M. Page,et al.  Multireference CI Gradients and MCSCF Second Derivatives. , 1984 .

[8]  N. Hush,et al.  The infrared absorption intensities of the water molecule: A quantum chemical study , 1986 .

[9]  Bernard R. Brooks,et al.  Analytic gradients from correlated wave functions via the two‐particle density matrix and the unitary group approach , 1980 .

[10]  Ajit Banerjee,et al.  The coupled‐cluster method with a multiconfiguration reference state , 1981 .

[11]  R. Bartlett,et al.  Analytical gradient evaluation in coupled-cluster theory , 1985 .

[12]  S. J. Cole,et al.  Comparison of MBPT and coupled cluster methods with full CI. II. Polarized basis sets , 1987 .

[13]  Jens Oddershede,et al.  A coupled cluster polarization propagator method applied to CH , 1986 .

[14]  J. S. Binkley,et al.  Electron correlation theories and their application to the study of simple reaction potential surfaces , 1978 .

[15]  Werner Kutzelnigg,et al.  Quantum chemistry in Fock space. I. The universal wave and energy operators , 1982 .

[16]  J. Cizek,et al.  Correlation problems in atomic and molecular systems. VII. Application of the open‐shell coupled‐cluster approach to simple π‐electron model systems , 1979 .

[17]  Peter R. Taylor,et al.  Unlinked cluster effects in molecular electronic structure. I. The HCN and HNC molecules , 1978 .

[18]  H. Schaefer,et al.  The analytic configuration interaction gradient method: Application to the cyclic and open isomers of the S3 molecule , 1986 .

[19]  Josef Paldus,et al.  Time-Independent Diagrammatic Approach to Perturbation Theory of Fermion Systems , 1975 .

[20]  Henry F. Schaefer,et al.  A systematic theoretical study of harmonic vibrational frequencies: The ammonium ion NH4+ and other simple molecules , 1980 .

[21]  G. Diercksen,et al.  Can the coupled cluster method improve many-body perturbation theory reaction energies significantly? the H2CO → H2 + CO reaction , 1987 .

[22]  Ian M. Mills,et al.  Anharmonic force constant calculations , 1972 .

[23]  R. Amos,et al.  On the efficient evaluation of analytic energy gradients , 1985 .

[24]  Peter R. Taylor,et al.  Analytical MCSCF energy gradients: Treatment of symmetry and CASSCF applications to propadienone , 1984 .

[25]  Henry F. Schaefer,et al.  Gradient techniques for open‐shell restricted Hartree–Fock and multiconfiguration self‐consistent‐field methods , 1979 .

[26]  R. Bartlett Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules , 1981 .

[27]  S. J. Cole,et al.  Electron correlation studies of SiC2 , 1986 .

[28]  Laurence S. Rothman,et al.  Dipole moment of water from Stark measurements of H2O, HDO, and D2O , 1973 .

[29]  Ron Shepard,et al.  C2V Insertion pathway for BeH2: A test problem for the coupled‐cluster single and double excitation model , 1983 .

[30]  H. Schaefer,et al.  A New dimension to quantum chemistry: Theoretical methods for the analytic evaluation of first, second, and third derivatives of the molecular electronic energy with respect to nuclear coordinates , 1986 .

[31]  Henry F. Schaefer,et al.  On the evaluation of analytic energy derivatives for correlated wave functions , 1984 .

[32]  Rodney J. Bartlett,et al.  Many‐body perturbation theory, coupled‐pair many‐electron theory, and the importance of quadruple excitations for the correlation problem , 1978 .

[33]  G. Scuseria,et al.  Comparison of single and double excitation coupled cluster and configuration interaction theories: determination of structure and equilibrium propertie , 1987 .

[34]  Josef Paldus,et al.  Correlation Problems in Atomic and Molecular Systems. IV. Extended Coupled-Pair Many-Electron Theory and Its Application to the B H 3 Molecule , 1972 .

[35]  Ian M. Mills,et al.  Force Constants and Dipole-Moment Derivatives of Molecules from Perturbed Hartree-Fock Calculations. I , 1968 .

[36]  R. Bartlett,et al.  Third‐order MBPT gradients , 1985 .

[37]  S. J. Cole,et al.  Singlet-triplet energy gap in methylene using many-body methods☆ , 1985 .

[38]  P. Joergensen,et al.  Second Quantization-based Methods in Quantum Chemistry , 1981 .

[39]  S. J. Cole,et al.  Towards a full CCSDT model for electron correlation , 1985 .

[40]  Toru Nakagawa,et al.  Band contour analysis of the nu1 and nu5 fundamentals of formaldehyde , 1971 .

[41]  U. Kaldor,et al.  Open‐Shell coupled‐cluster method: Variational and nonvariational calculation of ionization potentials , 1986 .

[42]  A. C. Hurley Electron correlation in small molecules , 1976 .

[43]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[44]  Julia E. Rice,et al.  The closed‐shell coupled cluster single and double excitation (CCSD) model for the description of electron correlation. A comparison with configuration interaction (CISD) results , 1987 .

[45]  H. Schaefer,et al.  The treatment of triple excitations within the coupled cluster description of molecular electronic structure , 1985 .

[46]  H. Schaefer,et al.  Generalization of analytic configuration interaction (CI) gradient techniques for potential energy hypersurfaces, including a solution to the coupled perturbed Hartree–Fock equations for multiconfiguration SCF molecular wave functions , 1982 .

[47]  Peter J. Knowles,et al.  Studies using the CASSCF wavefunction , 1982 .

[48]  Poul Jørgensen,et al.  Geometrical derivatives of energy surfaces and molecular properties , 1986 .

[49]  Clifford E. Dykstra,et al.  Advanced theories and computational approaches to the electronic structure of molecules , 1984 .

[50]  P. Löwdin,et al.  New Horizons of Quantum Chemistry , 1983 .

[51]  Willis B. Person,et al.  Interpretation of infrared intensity changes on molecular complex formation. I. Water dimer , 1983 .

[52]  R. Bartlett,et al.  Can simple localized bond orbitals and coupled cluster methods predict reliable molecular energies , 1985 .

[53]  Hiroshi Nakatsuji,et al.  Cluster expansion of the wavefunction. Electron correlations in ground and excited states by SAC (symmetry-adapted-cluster) and SAC CI theories , 1979 .

[54]  Keiji Morokuma,et al.  Energy gradient in a multi-configurational SCF formalism and its application to geometry optimization of trimethylene diradicals , 1979 .

[55]  P. Pulay Gradients in coupled-pair theories , 1983 .

[56]  S. Kondo,et al.  Infrared band intensities of formaldehyde and formaldehyde‐d2 , 1982 .

[57]  Michael A. Robb,et al.  MC SCF gradient optimization of the H2CO→H2 + CO transition structure , 1982 .

[58]  R. Bartlett,et al.  Analytic energy gradients for general coupled‐cluster methods and fourth‐order many‐body perturbation theory , 1986 .

[59]  J. Simons,et al.  Ab initio analytical molecular gradients and Hessians , 1983 .

[60]  Henry F. Schaefer,et al.  Accelerating the convergence of the coupled-cluster approach: The use of the DIIS method , 1986 .

[61]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[62]  N. Handy,et al.  Vibration-rotation wavefunctions and energies for the ground electronic state of the water molecule by a variational method , 1974 .

[63]  N. H. March,et al.  The many-body problem in quantum mechanics , 1968 .

[64]  J. Pople,et al.  Derivative studies in configuration–interaction theory , 1980 .

[65]  R. Bartlett,et al.  Analytical gradients for the coupled-cluster method† , 1984 .

[66]  P. Phariseau,et al.  Electrons in Finite and Infinite Structures , 1977 .

[67]  Henry F. Schaefer,et al.  Applications of electronic structure theory , 1977 .

[68]  R. Bartlett,et al.  A coupled cluster approach with triple excitations , 1984 .

[69]  J. Duncan,et al.  The general harmonic force field of formaldehyde , 1973 .

[70]  H. Schaefer,et al.  Analytic mc scf infrared intensities: application to formaldehyde , 1987 .