Real-time corneal segmentation and 3D needle tracking in intrasurgical OCT

Ophthalmic procedures demand precise surgical instrument control in depth, yet standard operating microscopes supply limited depth perception. Current commercial microscope-integrated optical coherence tomography partially meets this need with manually-positioned cross-sectional images that offer qualitative estimates of depth. In this work, we present methods for automatic quantitative depth measurement using real-time, two-surface corneal segmentation and needle tracking in OCT volumes. We then demonstrate these methods for guidance of ex vivo deep anterior lamellar keratoplasty (DALK) needle insertions. Surgeons using the output of these methods improved their ability to reach a target depth, and decreased their incidence of corneal perforations, both with statistical significance. We believe these methods could increase the success rate of DALK and thereby improve patient outcomes.

[1]  J. Izatt,et al.  3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea. , 2010, Optics express.

[2]  Adrian Mariampillai,et al.  Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit , 2012, Biomedical optics express.

[3]  Joseph A. Izatt,et al.  Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming , 2011, Biomedical optics express.

[4]  Kohji Ohbayashi,et al.  Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second , 2012, Biomedical optics express.

[5]  X Liu,et al.  Retina layer segmentation using kernel graph cuts and continuous max-flow. , 2015, Optics express.

[6]  Yalin Zheng,et al.  Automatic segmentation of anterior segment optical coherence tomography images , 2013, Journal of biomedical optics.

[7]  Susanne Binder,et al.  Clinical Experience With the First Commercially Available Intraoperative Optical Coherence Tomography System. , 2015, Ophthalmic surgery, lasers & imaging retina.

[8]  Manuel Guizar-Sicairos,et al.  Efficient subpixel image registration algorithms. , 2008, Optics letters.

[9]  Donald Hedeker,et al.  A mixed ordinal location scale model for analysis of Ecological Momentary Assessment (EMA) data. , 2009, Statistics and its interface.

[10]  Alain Saad,et al.  Intraoperative OCT-Assisted DMEK: 14 Consecutive Cases , 2015, Cornea.

[11]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  William Dumouchel,et al.  Integrating a robust option into a multiple regression computing environment , 1992 .

[13]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[14]  Eric Galin,et al.  Fast Distance Computation Between a Point and Cylinders, Cones, Line-Swept Spheres and Cone-Spheres , 2004, J. Graphics, GPU, & Game Tools.

[15]  O. Carrasco-Zevallos,et al.  Review of intraoperative optical coherence tomography: technology and applications [Invited]. , 2017, Biomedical optics express.

[16]  Eva Lankenau,et al.  Combining Optical Coherence Tomography (OCT) with an Operating Microscope , 2007 .

[17]  Joseph A Izatt,et al.  Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery. , 2010, Optics letters.

[18]  Mohammed Anwar,et al.  Big‐bubble technique to bare Descemet's membrane in anterior lamellar keratoplasty , 2002, Journal of cataract and refractive surgery.

[19]  Susanne Binder,et al.  INTRASURGICAL MICROSCOPE-INTEGRATED SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY–ASSISTED MEMBRANE PEELING , 2015, Retina.

[20]  J. Mehta,et al.  Comparison of outcomes of lamellar keratoplasty and penetrating keratoplasty in keratoconus. , 2009, American journal of ophthalmology.

[21]  Kang Zhang,et al.  Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system , 2010, Optics express.

[22]  Nils Gessert,et al.  A deep learning approach for pose estimation from volumetric OCT data , 2018, Medical Image Anal..

[23]  Thomas Klein,et al.  High-speed OCT light sources and systems [Invited]. , 2017, Biomedical optics express.

[24]  Pascal A. Dufour,et al.  Graph-Based Multi-Surface Segmentation of OCT Data Using Trained Hard and Soft Constraints , 2013, IEEE Transactions on Medical Imaging.

[25]  Eva Lankenau,et al.  Optimising deep anterior lamellar keratoplasty (DALK) using intraoperative online optical coherence tomography (iOCT) , 2014, British Journal of Ophthalmology.

[26]  Anthony N Kuo,et al.  Needle Depth and Big-Bubble Success in Deep Anterior Lamellar Keratoplasty: An Ex Vivo Microscope-Integrated OCT Study , 2016, Cornea.

[27]  Sina Farsiu,et al.  Length-adaptive graph search for automatic segmentation of pathological features in optical coherence tomography images , 2016, Journal of biomedical optics.

[28]  Chong Wang,et al.  Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. , 2017, Biomedical optics express.

[29]  Ling Wei,et al.  Microscope-integrated optical coherence tomography for image-aided positioning of glaucoma surgery , 2015, Journal of biomedical optics.

[30]  Joseph A. Izatt,et al.  Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation , 2010, Optics express.

[31]  Sina Farsiu,et al.  Visualization of Real-Time Intraoperative Maneuvers with a Microscope-Mounted Spectral Domain Optical Coherence Tomography System , 2013, Retina.

[32]  Michael D Abràmoff,et al.  A combined machine-learning and graph-based framework for the segmentation of retinal surfaces in SD-OCT volumes. , 2013, Biomedical optics express.

[33]  Guillermo Sapiro,et al.  Navier-stokes, fluid dynamics, and image and video inpainting , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[34]  Sucbei Moon,et al.  Lamellar keratoplasty using position-guided surgical needle and M-mode optical coherence tomography , 2017, Journal of biomedical optics.

[35]  Yan Li,et al.  Segmentation of 830- and 1310-nm LASIK corneal optical coherence tomography images , 2002, SPIE Medical Imaging.

[36]  Mohamed T. El-Haddad,et al.  Automated stereo vision instrument tracking for intraoperative OCT guided anterior segment ophthalmic surgical maneuvers. , 2015, Biomedical optics express.

[37]  Gábor Márk Somfai,et al.  Real-Time Automatic Segmentation of Optical Coherence Tomography Volume Data of the Macular Region , 2015, PloS one.

[38]  H. Dua,et al.  Outcomes of deep anterior lamellar keratoplasty following successful and failed ‘big bubble’ , 2011, British Journal of Ophthalmology.

[39]  Eva Lankenau,et al.  Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography. , 2013, JAMA ophthalmology.

[40]  Jin U. Kang,et al.  Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries. , 2012, Journal of biomedical optics.

[41]  Sina Farsiu,et al.  Insights into advanced retinopathy of prematurity using handheld spectral domain optical coherence tomography imaging. , 2009, Ophthalmology.

[42]  Susanne Binder,et al.  FEASIBILITY OF INTRASURGICAL SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRAPHY , 2011, Retina.

[43]  Yankui Sun,et al.  AUTOMATED EXTRACTION OF THE INNER CONTOUR OF THE ANTERIOR CHAMBER USING OPTICAL COHERENCE TOMOGRAPHY IMAGES , 2012 .

[44]  Kevin Wong,et al.  Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering , 2013, Journal of biomedical optics.

[45]  William J Dupps,et al.  Determination of feasibility and utility of microscope-integrated optical coherence tomography during ophthalmic surgery: the DISCOVER Study RESCAN Results. , 2015, JAMA ophthalmology.

[46]  R. Mandell,et al.  Corneal power correction factor for photorefractive keratectomy. , 1994, Journal of refractive and corneal surgery.

[47]  Thomas Gaujoux,et al.  Long-term results of deep anterior lamellar versus penetrating keratoplasty. , 2012, Ophthalmology.

[48]  Peyman Milanfar,et al.  Statistical Models of Signal and Noise and Fundamental Limits of Segmentation Accuracy in Retinal Optical Coherence Tomography , 2018, IEEE Transactions on Medical Imaging.

[49]  Joseph A. Izatt,et al.  Microscope-integrated OCT at 800 kHz line rate for high speed 4D imaging of ophthalmic surgery , 2017 .

[50]  A. Hofman,et al.  Distribution of central corneal thickness and its association with intraocular pressure: The Rotterdam Study. , 1997, American journal of ophthalmology.

[51]  Sina Farsiu,et al.  INTRAOPERATIVE USE OF HANDHELD SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY IMAGING IN MACULAR SURGERY , 2009, Retina.

[52]  Andrew M. Rollins,et al.  Integrative Advances for OCT-Guided Ophthalmic Surgery and Intraoperative OCT: Microscope Integration, Surgical Instrumentation, and Heads-Up Display Surgeon Feedback , 2014, 2015 Conference on Lasers and Electro-Optics (CLEO).

[53]  Sina Farsiu,et al.  Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images. , 2012, Investigative ophthalmology & visual science.

[54]  Kang Zhang,et al.  Real-time intraoperative 4D full-range FD-OCT based on the dual graphics processing units architecture for microsurgery guidance , 2011, Biomedical optics express.

[55]  Yuankai K. Tao,et al.  Microscope-integrated intraoperative OCT with electrically tunable focus and heads-up display for imaging of ophthalmic surgical maneuvers. , 2014, Biomedical optics express.

[56]  Sina Farsiu,et al.  Intrasurgical Human Retinal Imaging With Manual Instrument Tracking Using a Microscope-Integrated Spectral-Domain Optical Coherence Tomography Device. , 2015, Translational vision science & technology.

[57]  Wolfgang Wieser,et al.  High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s. , 2014, Biomedical optics express.

[58]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[59]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.

[60]  Reginald Birngruber,et al.  Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery. , 2005, Archives of ophthalmology.

[61]  Michelle Cua,et al.  Enhancing the visualization of human retina vascular networks by Graphics Processing Unit accelerated speckle variance OCT and graph cut retinal layer segmentation , 2015, Photonics West - Biomedical Optics.

[62]  Kostadinka Bizheva,et al.  Swelling of the human cornea revealed by high-speed, ultrahigh-resolution optical coherence tomography. , 2010, Investigative ophthalmology & visual science.

[63]  Mohamed T. El-Haddad,et al.  Spectrally encoded coherence tomography and reflectometry: Simultaneous en face and cross-sectional imaging at 2 gigapixels per second. , 2018, Journal of biophotonics.

[64]  Eva Lankenau,et al.  Advantages of microscope-integrated intraoperative online optical coherence tomography: usage in Boston keratoprosthesis type I surgery , 2016, Journal of biomedical optics.

[65]  Sina Farsiu,et al.  Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging. , 2011, Investigative ophthalmology & visual science.

[66]  Joseph A. Izatt,et al.  Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography , 2016, Biomedical optics express.