Assessment of Uncertainity in Spatially Systematic Sampling

What is the best way to distribute sample plots over an inventory area? In the absence of any specific prior knowledge about the area, simple random sampling (SRS, section 2.2) is often recommended because of its objectivity and readily available design-based assessment of uncertainty. SRS can easily locate some sample plots very close together, however, and leave large gaps elsewhere. Intuitively, a more representative sample would be obtained by spreading the plots evenly over the inventory area (Figure 10.1).

[1]  Jörgen Wallerman,et al.  Remote sensing aided spatial prediction of forest stem volume , 2003 .

[2]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[3]  R. Dunn,et al.  Two‐Dimensional Systematic Sampling of Land Use , 1993 .

[4]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .

[5]  H. Müller,et al.  Local Polynomial Modeling and Its Applications , 1998 .

[6]  Philippe Aubry,et al.  GEOSTATISTICAL ESTIMATION VARIANCE FOR THE SPATIAL MEAN IN TWO-DIMENSIONAL SYSTEMATIC SAMPLING , 2000 .

[7]  A. Kangas Estimating the parameters of systematic cluster sampling by model based inference , 1993 .

[8]  C. Braak,et al.  Model-free estimation from spatial samples: A reappraisal of classical sampling theory , 1990 .

[9]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[10]  George E. P. Box,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[11]  M. Sherman Variance Estimation for Statistics Computed from Spatial Lattice Data , 1996 .

[12]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[13]  S. Wood Thin plate regression splines , 2003 .

[14]  Marcello D’Orazio,et al.  Estimating the variance of the sample mean in two-dimensional systematic sampling , 2003 .

[15]  刘汉良 等距抽样(Systematic Sampling) , 1900 .

[16]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[17]  A. Milne,et al.  THE CENTRIC SYSTEMATIC AREA-SAMPLE TREATED AS A RANDOM SAMPLE , 1959 .

[18]  Tiberius Cunia,et al.  On the error of continuous forest inventory estimates , 1987 .

[19]  Luis Iglesias Martínez,et al.  Systematic sample design for the estimation of spatial means , 2003 .

[20]  J. Lindeberg Zur Theorie der Linientaxierung. , 1926 .

[21]  N. Cressie The origins of kriging , 1990 .

[22]  J. Nieschulze Regionalization of Variables of Sample Based Forest Inventories at the District Level , 2003 .

[23]  M. Wand Local Regression and Likelihood , 2001 .

[24]  T. W. Anderson,et al.  Methods of Estimating the Accuracy of Line and Sample Plot Surveys. , 1949 .

[25]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[26]  W. G. Cochran Relative Accuracy of Systematic and Stratified Random Samples for a Certain Class of Populations , 1946 .

[27]  J. Lindeberg Über die Berechnung des Mittelfehlers des Resultates einer Linientaxierung. , 1923 .

[28]  M. H. Quenouille Problems in Plane Sampling , 1949 .

[29]  R. Reese Geostatistics for Environmental Scientists , 2001 .

[30]  J. Osborne,et al.  Sampling Errors of Systematic and Random Surveys of Cover-Type Areas , 1942 .