Verilog‐A implementation of a 2D spatiotemporal VCSEL model for system‐oriented simulations of optical links

An implementation of a highly efficient spatiotemporal vertical-cavity surface-emitting laser (VCSEL) model in the circuit simulation environment of Cadence is presented. The VCSEL model, based on a set of modified rate equations, is written in Verilog-A. It enables the association of the VCSEL model with transistor-level models of the driver and detector circuits. Furthermore, the spatiotemporal nature of the model allows the generation of multimode responses and corresponding far-field intensity profiles, which can be used to investigate fibre coupling and propagation mechanisms. An optimization of the VCSEL drive signal performed using the built-in optimizer of Cadence is presented. © 2003 Wiley Periodicals, Inc. Microwave Opt Technol Lett 38: 304–308, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.11044

[1]  Angel Valle,et al.  Selection and modulation of high-order transverse modes in vertical-cavity surface-emitting lasers , 1998 .

[2]  David V. Plant,et al.  256-channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS , 2000, International Topical Meeting on Optics in Computing.

[3]  Daniel Erni,et al.  VISTAS: a comprehensive system-oriented spatiotemporal VCSEL model , 2003 .

[4]  Sung-Mo Kang,et al.  A comprehensive circuit-level model of vertical-cavity surface-emitting lasers , 1999 .

[5]  David V. Plant,et al.  256-channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS , 2001 .

[6]  W. White,et al.  High-speed (11 Gbit/s) data transmission using perfluorinated graded-index polymer optical fibers for short interconnects (<100 m) , 2000, IEEE Photonics Technology Letters.

[7]  David A. B. Miller,et al.  Limit to the Bit-Rate Capacity of Electrical Interconnects from the Aspect Ratio of the System Architecture , 1997, J. Parallel Distributed Comput..

[8]  K. Iga,et al.  Surface-emitting laser-its birth and generation of new optoelectronics field , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  Ira Miller,et al.  Analog behavioral modeling with the Verilog-A language , 1997 .

[10]  K. A. Shore,et al.  Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes , 1995 .

[11]  R.S. Tucker,et al.  Microwave Circuit Models of Semiconductor Injection Lasers , 1982, 1982 IEEE MTT-S International Microwave Symposium Digest.

[12]  K. A. Shore,et al.  Effects of spatial hole burning on polarization dynamics in edge-emitting and vertical-cavity surface-emitting laser diodes , 1996 .

[13]  W. Baechtold,et al.  2-D VCSEL model for investigation of dynamic fiber coupling and spatially filtered noise , 2003, IEEE Photonics Technology Letters.

[14]  P. Shum,et al.  Theoretical analysis of modulation response and second-order harmonic distortion in vertical-cavity surface-emitting lasers , 1996 .

[15]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[16]  D. Marcuse Theory of dielectric optical waveguides , 1974 .

[17]  G. Agrawal,et al.  Mode-partition noise in vertical-cavity surface-emitting lasers , 1997, IEEE Photonics Technology Letters.

[18]  K. Shore,et al.  Transverse-mode selection and noise properties of external-cavity vertical-cavity surface-emitting lasers including multiple-reflection effects , 1999 .

[19]  Meir Orenstein,et al.  Mode-coupling effects on the small-signal modulation of multitransverse-mode vertical-cavity semiconductor lasers , 1999 .