LIVAS: a 3-D multi-wavelength aerosol/cloud climatology based on CALIPSO and EARLINET

The authors present an aerosol/cloud ‘climatology’ based on EARLINET, AERONET and CALIPSO retrievals of wavelength dependent aerosol properties. The main emphasis is on the spectral dependence of the extinction and backscatter of representative aerosol types which can be used to convert CALIPSO profiles to other wavelengths (Figure 9, but not referred to in the text). The CALIPSO aerosol classification is the basis for LIVAS. For those aerosol types for which no information is available from EARLINET or AERONET the information is provided through other sources. The LIVAS ‘climatology’ is developed for use in the development of satellite instruments, in particular lidars, working at wavelengths from the UV/VIS to the SWIR. The ‘climatology’ is developed to replace the current ESA reference atmosphere model (RMA) which was developed for a limited region using data from a limited period. The LIVAS data base seems very useful and the MS is in general well written and suitable for publication in ACP. However, reading in detail, there are some questions arising which require correction, see my suggestions below.

[1]  David M. Winker,et al.  The global 3-D distribution of tropospheric aerosols as characterized by CALIOP , 2012 .

[2]  V. Freudenthaler,et al.  EARLINET: towards an advanced sustainable European aerosol lidar network , 2014 .

[3]  M. McCormick,et al.  Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements , 2005 .

[4]  Albert Ansmann,et al.  Size matters: Influence of multiple scattering on CALIPSO light‐extinction profiling in desert dust , 2010 .

[5]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements , 2000 .

[6]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[7]  D. Winker,et al.  Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .

[8]  Boon N. Chew,et al.  Characterizing the vertical profile of aerosol particle extinction and linear depolarization over Southeast Asia and the Maritime Continent: The 2007–2009 view from CALIOP , 2013 .

[9]  Alexander Smirnov,et al.  High aerosol optical depth biomass burning events: A comparison of optical properties for different source regions , 2003 .

[10]  A. Ansmann,et al.  Low Arabian dust extinction‐to‐backscatter ratio , 2013 .

[11]  T. Eck,et al.  An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .

[12]  Pavel Litvinov,et al.  Aerosol properties over the ocean from PARASOL multiangle photopolarimetric measurements , 2011 .

[13]  T. Eck,et al.  Optical Properties of Atmospheric Aerosol in Maritime Environments , 2002 .

[14]  Hester Volten,et al.  Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm , 2001 .

[15]  P. Formenti,et al.  Seasonal variations of the physical and optical characteristics of Saharan dust: Results from the Dust Outflow and Deposition to the Ocean (DODO) experiment , 2008 .

[16]  V. Freudenthaler,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments. , 2004, Applied optics.

[17]  O. C.TOLEDAN,et al.  Optical properties of aerosol mixtures derived from sun-sky radiometry during SAMUM-2 , 2011 .

[18]  Riko Oki,et al.  The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation , 2015 .

[19]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[20]  EARLINET observations related to Saharan Dust events (2000-2010) , 2014 .

[21]  V. Freudenthaler,et al.  EARLINET correlative measurements for CALIPSO: First intercomparison results , 2010 .

[22]  A. Ansmann,et al.  Optimizing CALIPSO Saharan dust retrievals , 2013 .

[23]  A. Ansmann,et al.  Ground‐based validation of CALIPSO observations of dust and smoke in the Cape Verde region , 2013 .

[24]  A. Ansmann,et al.  Determination of stratospheric aerosol microphysical properties from independent extinction and backscattering measurements with a Raman lidar. , 1995, Applied optics.

[25]  V. Freudenthaler,et al.  Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006 , 2009 .

[26]  Charles A. Trepte,et al.  Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust , 2012 .

[27]  A. Ansmann,et al.  Aerosol-type-dependent lidar ratios observed with Raman lidar , 2007 .

[28]  Alexander Smirnov,et al.  A Pure Marine Aerosol Model, for Use in Remote Sensing Applications , 2012 .

[29]  A. M. Silva,et al.  EARLINET correlative observations for CALIPSO (2006-2010) , 2013 .

[30]  D. Winker,et al.  The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm , 2009 .

[31]  Mark A. Vaughan,et al.  The Retrieval of Profiles of Particulate Extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) Data: Algorithm Description , 2009 .

[32]  V. Freudenthaler,et al.  Optical properties of aerosol mixtures derived from sun-sky radiometry during SAMUM-2 , 2011 .

[33]  V. Freudenthaler,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments. , 2004 .

[34]  Jean-François Léon,et al.  Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust , 2006 .

[35]  David M. Winker,et al.  The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance , 2009 .

[36]  T. Eck,et al.  Spectral discrimination of coarse and fine mode optical depth , 2003 .

[37]  J. Bösenberg,et al.  EARLINET: A European Aerosol Research Lidar Network to Establish an Aerosol Climatology , 2003 .

[38]  A. Stoffelen,et al.  The definition of an atmospheric database for Aeolus , 2010 .

[39]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[40]  L. Isaksen,et al.  THE ATMOSPHERIC DYNAMICS MISSION FOR GLOBAL WIND FIELD MEASUREMENT , 2005 .

[41]  M. Vaughan,et al.  Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask , 2013 .

[42]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[43]  T. Eck,et al.  A review of biomass burning emissions part III: intensive optical properties of biomass burning particles , 2004 .

[44]  Y. J. Kim,et al.  Spectral optical properties of long-range transport Asian dust and pollution aerosols over Northeast Asia in 2007 and 2008 , 2010 .

[45]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[46]  Bryan J. Johnson,et al.  Balloonborne measurements of Pinatubo aerosol during 1991 and 1992 at 41°N: Vertical profiles, size distribution, and volatility , 1993 .

[47]  Kathleen A. Powell,et al.  CALIOP and AERONET aerosol optical depth comparisons: One size fits none , 2013 .

[48]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[49]  T. Müller,et al.  Spectral absorption coefficients and imaginary parts of refractive indices of Saharan dust during SAMUM-1 , 2009 .

[50]  Martin Wirth,et al.  Airborne measurements of dust layer properties, particle size distribution and mixing state of Saharan dust during SAMUM 2006 , 2009 .

[51]  David M. Winker,et al.  Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements , 2009 .

[52]  V. Freudenthaler,et al.  Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2 , 2011 .

[53]  A. Ansmann,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms. , 2004, Applied optics.

[54]  R. Engelmann,et al.  Surface matters: limitations of CALIPSO V3 aerosol typing in coastal regions , 2014 .

[55]  Thomas F. Eck,et al.  Measurements of irradiance attenuation and estimation of aerosol single scattering albedo for biomass burning aerosols in Amazonia , 1998 .

[56]  A. Ansmann,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio. , 2004, Applied optics.

[57]  V. Freudenthaler,et al.  Dual-wavelength linear depolarization ratio of volcanic aerosols: Lidar measurements of the Eyjafjallajökull plume over Maisach, Germany , 2012 .

[58]  Soon-Chang Yoon,et al.  Seasonal and monthly variations of columnar aerosol optical properties over East Asia determined from multi-year MODIS, LIDAR, and AERONET Sun/sky radiometer measurements , 2007 .

[59]  R. Höller,et al.  Wavelength-dependent aerosol single-scattering albedo: Measurements and model calculations for a coastal site near the Sea of Japan during ACE-Asia : Characterization of Asian aerosols and their radiative impacts on climate , 2003 .

[60]  K. Liou,et al.  Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals. , 1996, Applied optics.