Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrödinger equations

As a natural generalization of the fractional Schrdinger equation, the variable-order fractional Schrdinger equation has been exploited to study fractional quantum phenomena. In this paper, we develop an exponentially accurate JacobiGaussLobatto collocation (JGL-C) method to solve the variable-order fractional Schrdinger equations in one dimension (1D) and two dimensions (2D). In this method, the aforementioned problem is reduced to a system of ordinary differential equations (ODEs) in the time variable. As a result, we propose two efficient schemes for dealing with the numerical solutions of initial value problems for nonlinear system of ordinary differential equations, one based on the implicit RungeKutta (IRK) method of fourth order and the other based on JacobiGaussRadau collocation (JGR-C) method. The validity and effectiveness of the two methods are demonstrated by solving three numerical examples in 1D and 2D. The convergence of the methods is graphically analyzed. The results demonstrate that the proposed methods are powerful algorithms with high accuracy for solving the variable-order nonlinear partial differential equations.

[1]  Saudi Arabia,et al.  A NOVEL SPECTRAL APPROXIMATION FOR THE TWO-DIMENSIONAL FRACTIONAL SUB-DIFFUSION PROBLEMS , 2015 .

[2]  Qun Liu,et al.  Finite difference method for time-space-fractional Schrödinger equation , 2015, Int. J. Comput. Math..

[3]  I. Turner,et al.  Numerical methods for fractional partial differential equations with Riesz space fractional derivatives , 2010 .

[4]  E. Schrödinger An Undulatory Theory of the Mechanics of Atoms and Molecules , 1926 .

[5]  N. Laskin Fractional quantum mechanics and Lévy path integrals , 1999, hep-ph/9910419.

[6]  Bertram Ross,et al.  Fractional integration operator of variable order in the holder spaces Hλ(x) , 1995 .

[7]  Carlos F.M. Coimbra,et al.  Mechanics with variable‐order differential operators , 2003 .

[8]  Yutian Lei,et al.  Classification of positive solutions for a static Schrödinger-Maxwell equation with fractional Laplacian , 2015, Appl. Math. Lett..

[9]  E. Valdinoci,et al.  Ground states and concentration phenomena for the fractional Schrödinger equation , 2014, 1411.0576.

[10]  I. Podlubny Fractional differential equations , 1998 .

[11]  Jie Xin,et al.  The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition , 2011, Comput. Math. Appl..

[12]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[13]  Y. Chen,et al.  Variable-order fractional differential operators in anomalous diffusion modeling , 2009 .

[14]  A. H. Bhrawy A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations , 2015, Numerical Algorithms.

[15]  S. S. Ezz-Eldien,et al.  A new Jacobi spectral collocation method for solving 1+1 fractional Schrödinger equations and fractional coupled Schrödinger systems , 2014 .

[16]  Carlos F.M. Coimbra,et al.  The variable viscoelasticity oscillator , 2005 .

[17]  B. Ross,et al.  Integration and differentiation to a variable fractional order , 1993 .

[18]  Changpin Li,et al.  High-Order Algorithms for Riesz Derivative and their Applications (III) , 2016 .

[19]  Nick Laskin Lévy flights over quantum paths , 2005 .

[20]  T. Hartley,et al.  Initialization, conceptualization, and application in the generalized (fractional) calculus. , 2007, Critical reviews in biomedical engineering.

[21]  Fawang Liu,et al.  Numerical Methods for the Variable-Order Fractional Advection-Diffusion Equation with a Nonlinear Source Term , 2009, SIAM J. Numer. Anal..

[22]  Stefan Samko,et al.  Fractional integration and differentiation of variable order: an overview , 2012, Nonlinear Dynamics.

[23]  Cem Çelik,et al.  Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative , 2012, J. Comput. Phys..

[24]  Xuan Zhao,et al.  Second-order approximations for variable order fractional derivatives: Algorithms and applications , 2015, J. Comput. Phys..

[25]  Jie Xin,et al.  Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation , 2008, Appl. Math. Comput..

[26]  M. Meerschaert,et al.  Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .

[27]  Neville J. Ford,et al.  A numerical method for the fractional Schrödinger type equation of spatial dimension two , 2013 .

[28]  F. Mainardi,et al.  Fractals and fractional calculus in continuum mechanics , 1997 .

[29]  Fanhai Zeng,et al.  Numerical Methods for Fractional Calculus , 2015 .

[30]  Alan D. Freed,et al.  On the Solution of Nonlinear Fractional-Order Differential Equations Used in the Modeling of Viscoplasticity , 1999 .

[31]  George E. Karniadakis,et al.  Fractional spectral collocation methods for linear and nonlinear variable order FPDEs , 2015, J. Comput. Phys..

[32]  Zheng Yang,et al.  A class of linearized energy-conserved finite difference schemes for nonlinear space-fractional Schrödinger equations , 2016, Int. J. Comput. Math..

[33]  J. A. Tenreiro Machado,et al.  An Efficient Operational Matrix Technique for Multidimensional Variable-Order Time Fractional Diffusion Equations , 2016 .

[34]  N. Laskin Fractional Schrödinger equation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Xin Jie,et al.  RESERACH ANNOUNCEMENTS Existence of the Global Smooth Solution to the Period Boundary Value Problem of Fractional Nonlinear Schrdinger Equation , 2008 .

[36]  Yangquan Chen,et al.  High-order algorithms for Riesz derivative and their applications (II) , 2015, J. Comput. Phys..

[37]  Ralf Metzler,et al.  Fractional dynamics : recent advances , 2011 .

[38]  Fawang Liu,et al.  A Variable Order Fractional Differential-Based Texture Enhancement Algorithm with Application in Medical Imaging , 2015, PloS one.

[39]  M. Shitikova,et al.  Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids , 1997 .

[40]  M. Zaky,et al.  Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation , 2014, Nonlinear Dynamics.

[41]  Richard T. Baillie,et al.  Long memory processes and fractional integration in econometrics , 1996 .

[42]  Wei Yang,et al.  Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative , 2013, J. Comput. Phys..

[43]  S. Longhi Fractional Schrödinger equation in optics. , 2015, Optics letters.

[44]  Carlos F.M. Coimbra,et al.  On the Selection and Meaning of Variable Order Operators for Dynamic Modeling , 2010 .

[45]  Ali H. Bhrawy,et al.  Numerical algorithm for the variable-order Caputo fractional functional differential equation , 2016 .

[46]  P. Amore,et al.  Collocation method for fractional quantum mechanics , 2009, 0912.2562.

[47]  Ram K. Pandey,et al.  An analytic solution for the space-time fractional advection-dispersion equation using the optimal homotopy asymptotic method , 2012, Comput. Phys. Commun..

[48]  Xuan Zhao,et al.  A Fourth-order Compact ADI scheme for Two-Dimensional Nonlinear Space Fractional Schrödinger Equation , 2014, SIAM J. Sci. Comput..

[49]  YangQuan Chen,et al.  A Physical experimental study of variable-order fractional integrator and differentiator , 2011 .

[50]  Ali H. Bhrawy,et al.  A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation , 2015, Numerical Algorithms.

[51]  W. Chen,et al.  A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems , 2011 .

[52]  Changpin Li,et al.  High-Order Algorithms for Riesz Derivative and Their Applications $(I)$ , 2014 .

[53]  Anatoly A. Alikhanov,et al.  Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation , 2013, Appl. Math. Comput..

[54]  Xiaoyi Guo,et al.  Some physical applications of fractional Schrödinger equation , 2006 .

[55]  Ali H. Bhrawy,et al.  A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations , 2015, J. Comput. Phys..

[56]  Abdon Atangana,et al.  On the stability and convergence of the time-fractional variable order telegraph equation , 2015, J. Comput. Phys..

[57]  Han Zhou,et al.  A class of second order difference approximations for solving space fractional diffusion equations , 2012, Math. Comput..

[58]  Ali H. Bhrawy,et al.  A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations , 2015, J. Comput. Phys..

[59]  Shuqin Zhang,et al.  Existence result of solutions to differential equations of variable-order with nonlinear boundary value conditions , 2013, Commun. Nonlinear Sci. Numer. Simul..

[60]  M. Naber Time fractional Schrödinger equation , 2004, math-ph/0410028.

[61]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[62]  José António Tenreiro Machado,et al.  Numerical Solution of the Two-Sided Space–Time Fractional Telegraph Equation Via Chebyshev Tau Approximation , 2017, J. Optim. Theory Appl..

[63]  M. Ezzat,et al.  On fractional thermoelasticity , 2011 .

[64]  Lu Zhang,et al.  Fast numerical solution for fractional diffusion equations by exponential quadrature rule , 2015, J. Comput. Phys..

[65]  Vahid Johari Majd,et al.  Solution existence for non-autonomous variable-order fractional differential equations , 2012, Math. Comput. Model..