Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting.
暂无分享,去创建一个
Michael Grätzel | Jingshan Luo | Ludmilla Steier | Timo Sajavaara | T. Sajavaara | M. Grätzel | Jingshan Luo | Marcel Schreier | L. Steier | Marcel Schreier | Matthew T Mayer | M. Mayer
[1] Zhiyuan Zeng,et al. Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor , 2012, Scientific Reports.
[2] T. Sajavaara,et al. Time-of-flight - Energy spectrometer for elemental depth profiling - Jyväskylä design , 2014 .
[3] J. Hupp,et al. Atomic Layer Deposition of Fe2O3 Using Ferrocene and Ozone , 2011 .
[4] Juan Bisquert,et al. Photoelectrochemical and impedance spectroscopic investigation of water oxidation with "Co-Pi"-coated hematite electrodes. , 2012, Journal of the American Chemical Society.
[5] Bin Liu,et al. Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.
[6] C. Detavernier,et al. Plasma enhanced atomic layer deposition of Fe2O3 thin films , 2014 .
[7] J. Escrig,et al. Crossover between two different magnetization reversal modes in arrays of iron oxide nanotubes , 2008, 1106.2833.
[8] C. F. Ng,et al. TiO2/(CdS, CdSe, CdSeS) Nanorod Heterostructures and Photoelectrochemical Properties , 2012 .
[9] T. Hamann,et al. Substrate Dependent Water Splitting with Ultrathin α-Fe2O3 Electrodes , 2014 .
[10] M. Grätzel,et al. Ultrafast Charge Carrier Recombination and Trapping in Hematite Photoanodes under Applied Bias , 2014, Journal of the American Chemical Society.
[11] H. Fjellvåg,et al. Effect of magnetic field on the growth of α-Fe2O3 thin films by atomic layer deposition , 2004 .
[12] M. Aronniemi,et al. Characterization and gas-sensing behavior of an iron oxide thin film prepared by atomic layer deposition , 2008 .
[13] J. Elam,et al. Low temperature atomic layer deposition of highly photoactive hematite using iron(III) chloride and water , 2013 .
[14] Michael Grätzel,et al. Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. , 2010, Angewandte Chemie.
[15] Jun Chen,et al. α‐Fe2O3 Nanotubes in Gas Sensor and Lithium‐Ion Battery Applications , 2005 .
[16] R. Krol,et al. Photoelectrochemical Characterization of Sprayed α-Fe 2 O 3 Thin Films : Influence of Si Doping and SnO 2 Interfacial Layer , 2008 .
[17] Michael Grätzel,et al. WO3-Fe2O3 Photoanodes for Water Splitting: A Host Scaffold, Guest Absorber Approach , 2009 .
[18] A. Rothschild,et al. Resonant light trapping in ultrathin films for water splitting. , 2013, Nature materials.
[19] M. Grätzel,et al. Controlling Photoactivity in Ultrathin Hematite Films for Solar Water‐Splitting , 2010 .
[20] R. Krol,et al. Photoelectrochemical Characterization of Sprayed alpha-Fe2O3 Thin Films: influence of Si Doping and SnO2 Interfacial Layer , 2008 .
[21] Hao Shen,et al. Ordered iron oxide nanotube arrays of controlled geometry and tunable magnetism by atomic layer deposition. , 2007, Journal of the American Chemical Society.
[22] R. Gordon,et al. Atomic layer deposition of transition metals , 2003, Nature materials.
[23] Hematite-based photo-oxidation of water using transparent distributed current collectors. , 2013, ACS applied materials & interfaces.
[24] Matthew R. Shaner,et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation , 2014, Science.
[25] Juan Bisquert,et al. Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes , 2012 .
[26] C. F. Ng,et al. Rationally Designed Hierarchical TiO2@Fe2O3 Hollow Nanostructures for Improved Lithium Ion Storage , 2013 .
[27] Jingshan Luo,et al. Porous Hydroxide Nanosheets on Preformed Nanowires by Electrodeposition: Branched Nanoarrays for Electrochemical Energy Storage , 2012 .
[28] K. Kukli,et al. Structural and Magnetic Studies on Iron Oxide and Iron-Magnesium Oxide Thin Films Deposited Using Ferrocene and (Dimethylaminomethyl)ferrocene Precursors , 2013 .
[29] Thomas W. Hamann,et al. Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition. , 2011, Langmuir : the ACS journal of surfaces and colloids.
[30] H. Fjellvåg,et al. Growth of Fe2O3 thin films by atomic layer deposition , 2005 .
[31] M. Grätzel,et al. Understanding the Role of Underlayers and Overlayers in Thin Film Hematite Photoanodes , 2014 .
[32] Yongjing Lin,et al. Nanonet-based hematite heteronanostructures for efficient solar water splitting. , 2011, Journal of the American Chemical Society.
[33] Jan Augustynski,et al. Highly efficient water splitting by a dual-absorber tandem cell , 2012, Nature Photonics.
[34] K. Kukli,et al. Atomic Layer Deposition of Iron Oxide Thin Films and Nanotubes using Ferrocene and Oxygen as Precursors , 2008 .
[35] Michel Dupuis,et al. Charge Transport in Metal Oxides: A Theoretical Study of Hematite α-Fe2O3 , 2005 .
[36] Dalva Lúcia Araújo de Faria,et al. Raman microspectroscopy of some iron oxides and oxyhydroxides , 1997 .
[37] B. Doyle,et al. Technique for profiling 1H with 2.5‐MeV Van de Graaff accelerators , 1979 .
[38] M. Graetzel,et al. Enhancement in the Performance of Ultrathin Hematite Photoanode for Water Splitting by an Oxide Underlayer. , 2012 .
[39] M. Grätzel,et al. Transparent, conducting Nb:SnO2 for host-guest photoelectrochemistry. , 2012, Nano letters.
[40] Mikko Ritala,et al. Atomic layer deposition (ALD): from precursors to thin film structures , 2002 .
[41] Philip J. Martin,et al. Structural, optical and electrical properties of undoped polycrystalline hematite thin films produced using filtered arc deposition , 2008 .