Locally oxidized silicon surface-plasmon Schottky detector for telecom regime.

We experimentally demonstrate an on-chip nanoscale silicon surface-plasmon Schottky photodetector based on internal photoemission process and operating at telecom wavelengths. The device is fabricated using a self-aligned approach of local-oxidation of silicon (LOCOS) on silicon on insulator substrate, which provides compatibility with standard complementary metal-oxide semiconductor technology and enables the realization of the photodetector and low-loss bus photonic waveguide at the same fabrication step. Additionally, LOCOS technique allows avoiding lateral misalignment between the silicon surface and the metal layer to form a nanoscale Schottky contact. The fabricated devices showed enhanced detection capability for shorter wavelengths that is attributed to increased probability of the internal photoemission process. We found the responsivity of the nanodetector to be 0.25 and 13.3 mA/W for incident optical wavelengths of 1.55 and 1.31 μm, respectively. The presented device can be integrated with other nanophotonic and nanoplasmonic structures for the realization of monolithic opto-electronic circuitry on-chip.

[1]  Uriel Levy,et al.  Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide , 2010 .

[2]  Masaya Notomi,et al.  All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip , 2010, 1002.3207.

[3]  M. Lipson,et al.  Low loss etchless silicon photonic waveguides , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[4]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[5]  Xianshu Luo,et al.  Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator , 2009 .

[6]  J. Endriz Surface waves and grating‐tuned photocathodes , 1974 .

[7]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[8]  Hon Ki Tsang,et al.  Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements , 2002 .

[9]  J. Michel,et al.  High-performance Ge-on-Si photodetectors , 2010 .

[10]  Pierre Berini,et al.  Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide , 2009 .

[11]  L. Sekaric,et al.  Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. , 2007, Optics express.

[12]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[13]  Qian-jin Wang,et al.  Photocurrent in Ag–Si photodiodes modulated by plasmonic nanopatterns , 2009 .

[14]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[15]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[16]  Michal Lipson,et al.  Oxidized Silicon-On-Insulator (OxSOI) from bulk silicon: a new photonic platform , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[17]  Pierre Berini,et al.  Thin-Film Schottky Barrier Photodetector Models , 2010, IEEE Journal of Quantum Electronics.

[18]  S. Rahmatollahpur,et al.  Barrier height and ideality factor dependency on identically produced small Au/p-Si Schottky barrier diodes , 2010 .

[19]  M. Burghard,et al.  Surface plasmon coupling to nanoscale Schottky-type electrical detectors , 2010 .

[20]  A. Knights,et al.  Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550nm , 2005 .

[21]  Alexander Fang,et al.  An all-silicon Raman laser , 2005, Nature.

[22]  Ivo Rendina,et al.  Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide , 2010 .

[23]  Uriel Levy,et al.  Demonstration of submicron square-like silicon waveguide using optimized LOCOS process. , 2010, Optics express.

[24]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[25]  Graham T. Reed,et al.  Athermal and low loss ridge silicon waveguides , 2010, OPTO.

[26]  Pierre Berini,et al.  Surface plasmon waveguide Schottky detector. , 2010, Optics express.

[27]  Guo-Qiang Lo,et al.  Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications , 2008 .

[28]  P Lalanne,et al.  Ultra-High Q/V Fabry-Perot microcavity on SOI substrate. , 2007, Optics express.

[29]  M. Notomi,et al.  Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings. , 2010, Optics express.

[30]  N. Garry Tarr,et al.  Schottky photodetector integration on LOCOS-defined SOI waveguides , 2010, Photonics North.

[31]  M. Lipson,et al.  Waveguide-integrated telecom-wavelength photodiode in deposited silicon. , 2011, Optics letters.

[32]  R. Fowler,et al.  The Analysis of Photoelectric Sensitivity Curves for Clean Metals at Various Temperatures , 1931 .

[33]  J. Becher,et al.  Surface-plasmon-assisted photoemission , 1981 .

[34]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[35]  F. Xia,et al.  Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects , 2010, Nature.

[36]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[37]  J. Bowers,et al.  Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product , 2009 .

[38]  D. Peters An infrared detector utilizing internal photoemission , 1967 .

[39]  Michal Lipson,et al.  High confinement micron-scale silicon nitride high Q ring resonator. , 2009, Optics express.

[40]  Nahum Izhaky,et al.  High-speed optical modulation based on carrier depletion in a silicon waveguide. , 2007, Optics express.

[41]  Qianfan Xu,et al.  12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. , 2007, Optics express.