Degeneracies in sky localization determination from a spinning coalescing binary through gravitational wave observations: a Markov-chain Monte Carlo analysis for two detectors

Gravitational-wave signals from inspirals of binary compact objects (black holes and neutron stars) are primary targets of the ongoing searches by ground-based gravitational-wave interferometers (LIGO, Virgo and GEO-600). We present parameter-estimation simulations for inspirals of black-hole–neutron-star binaries using Markov-chain Monte Carlo methods. As a specific example of the power of these methods, we consider source localization in the sky and analyze the degeneracy in it when data from only two detectors are used. We focus on the effect that the black-hole spin has on the localization estimation. We also report on a comparative Markov-chain Monte Carlo analysis with two different waveform families, at 1.5 and 3.5 post-Newtonian orders.

[1]  E. Katsavounidis,et al.  Gravitational wave burst source direction estimation using time and amplitude information , 2008, Physical Review D.

[2]  I. Mandel,et al.  Parameter estimation of spinning binary inspirals using Markov chain Monte Carlo , 2008, 0805.1689.

[3]  J. Gair,et al.  A constrained Metropolis–Hastings search for EMRIs in the Mock LISA Data Challenge 1B , 2008, 0804.3322.

[4]  I. Mandel,et al.  Gravitational-Wave Astronomy with Inspiral Signals of Spinning Compact-Object Binaries , 2007, 0710.1897.

[5]  Duncan A. Brown,et al.  Detailed comparison of LIGO and Virgo inspiral pipelines in preparation for a joint search , 2007, gr-qc/0701027.

[6]  N. University,et al.  Constraining Population Synthesis Models via Empirical Binary Compact Object Merger and Supernova Rates , 2006, astro-ph/0610076.

[7]  N. Christensen,et al.  Coherent Bayesian analysis of inspiral signals , 2007, 0707.3962.

[8]  N. Christensen,et al.  Coherent Bayesian inference on compact binary inspirals using a network of interferometric gravitational wave detectors , 2006, gr-qc/0609131.

[9]  N. Leroy,et al.  Reconstruction of source location in a network of gravitational wave interferometric detectors , 2006, gr-qc/0609118.

[10]  R. Lang,et al.  Measuring coalescing massive binary black holes with gravitational waves: The impact of spin-induced precession , 2006, gr-qc/0608062.

[11]  A. Buonanno,et al.  Higher-order spin effects in the dynamics of compact binaries. II. Radiation field , 2006, gr-qc/0605140.

[12]  A. Buonanno,et al.  Higher-order spin effects in the dynamics of compact binaries. I. Equations of motion , 2006, gr-qc/0605139.

[13]  N. Christensen,et al.  Bayesian inference on compact binary inspiral gravitational radiation signals in interferometric data , 2006, gr-qc/0602067.

[14]  J. Rosenthal,et al.  On adaptive Markov chain Monte Carlo algorithms , 2005 .

[15]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .

[16]  Joshua R. Smith,et al.  The status of GEO 600 , 2004, SPIE Astronomical Telescopes + Instrumentation.

[17]  E. Flanagan Higher-order gravity theories and scalar?tensor theories , 2003, gr-qc/0309015.

[18]  Alberto Vecchio,et al.  LISA observations of rapidly spinning massive black hole binary systems , 2003, astro-ph/0304051.

[19]  A. Buonanno,et al.  Detecting gravitational waves from precessing binaries of spinning compact objects: Adiabatic limit , 2002, gr-qc/0211087.

[20]  V. Kalogera,et al.  Searching for gravitational waves from the inspiral of precessing binary systems: Problems with current waveforms , 2002, gr-qc/0207062.

[21]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  B. Barish,et al.  LIGO and the Detection of Gravitational Waves , 1999 .

[23]  H. Damasio,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence: Special Issue on Perceptual Organization in Computer Vision , 1998 .

[24]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[25]  Wiseman,et al.  Gravitational radiation from compact binary systems: Gravitational waveforms and energy loss to second post-Newtonian order. , 1996, Physical review. D, Particles and fields.

[26]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[27]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[28]  Kidder,et al.  Coalescing binary systems of compact objects to (post)5/2-Newtonian order. V. Spin effects. , 1995, Physical review. D, Particles and fields.

[29]  Thorne,et al.  Spin-induced orbital precession and its modulation of the gravitational waveforms from merging binaries. , 1994, Physical review. D, Particles and fields.

[30]  L. Rezzolla,et al.  Classical and Quantum Gravity , 2002 .

[31]  B. Brown Proceedings of the Society of Photo-optical Instrumentation Engineers, Seminar-in-depth, 'Solving Problems in Security, Surveillance and Law Enforcement with Optical Instrumentation' , 1974 .