OBSERVATIONS OF THE NEAR-INFRARED SPECTRUM OF THE ZODIACAL LIGHT WITH CIBER

Interplanetary dust (IPD) scatters solar radiation which results in the zodiacal light that dominates the celestial diffuse brightness at optical and near-infrared wavelengths. Both asteroid collisions and cometary ejections produce the IPD, but the relative contribution from these two sources is still unknown. The low resolution spectrometer (LRS) onboard the Cosmic Infrared Background ExpeRiment (CIBER) observed the astrophysical sky spectrum between 0.75 and 2.1 μm over a wide range of ecliptic latitude. The resulting zodiacal light spectrum is redder than the solar spectrum, and shows a broad absorption feature, previously unreported, at approximately 0.9 μm, suggesting the existence of silicates in the IPD material. The spectral shape of the zodiacal light is isotropic at all ecliptic latitudes within the measurement error. The zodiacal light spectrum, including the extended wavelength range to 2.5 μm using Infrared Telescope in Space (IRTS) data, is qualitatively similar to the reflectance of S-type asteroids. This result can be explained by the proximity of S-type asteroidal dust to Earth's orbit, and the relatively high albedo of asteroidal dust compared with cometary dust.

[1]  H. Matsuhara,et al.  AKARI OBSERVATION OF THE FLUCTUATION OF THE NEAR-INFRARED BACKGROUND , 2010, 1010.0491.

[2]  J. Williams,et al.  A Three-Parameter Asteroid Taxonomy , 1989 .

[3]  E. L. Wright,et al.  The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. II. Model of the Interplanetary Dust Cloud , 1997, astro-ph/9806250.

[4]  T. Onaka,et al.  IRTS observation of the mid-infrared spectrum of the zodiacal emission , 1998 .

[5]  Richard P. Binzel,et al.  MUSES‐C target asteroid (25143) 1998 SF36: A reddened ordinary chondrite , 2001 .

[6]  Soojong Pak,et al.  The cosmic infrared background experiment , 2005, astro-ph/0510587.

[7]  Martin G. Cohen,et al.  Powerful model for the point source sky: Far-ultraviolet and enhanced midinfrared performance , 1994 .

[8]  Patrick Morris,et al.  The mid-infrared spectrum of the zodiacal and exozodiacal light , 2003 .

[9]  Harold F. Levison,et al.  Recent Origin of the Solar System Dust Bands , 2003 .

[10]  S. H. Moseley,et al.  Dynamical Zodiacal Cloud Models Constrained by High Resolution Spectroscopy of the Zodiacal Light , 2004, astro-ph/0608141.

[11]  Toshio Matsumoto,et al.  Rocket-borne observations of the zodiacal light in the near-infrared wavelengths. , 1995 .

[12]  S. Meyer,et al.  COBE: The Far Infrared Absolute Spectrophotometer , 1989 .

[13]  E. L. Wright,et al.  The Infrared Array Camera (IRAC) Shallow Survey , 2004 .

[14]  Akiko M. Nakamura,et al.  Small bodies in planetary systems , 2009 .

[15]  Harold F. Levison,et al.  COMETARY ORIGIN OF THE ZODIACAL CLOUD AND CARBONACEOUS MICROMETEORITES. IMPLICATIONS FOR HOT DEBRIS DISKS , 2009, 0909.4322.

[16]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[17]  S. Price,et al.  Infrared measurements of zodiacal light , 1985 .

[18]  S. Serjeant,et al.  SWIRE: The SIRTF Wide‐Area Infrared Extragalactic Survey , 2001, astro-ph/0305375.

[19]  K. Emery,et al.  Proposed reference irradiance spectra for solar energy systems testing , 2002 .

[20]  Edward L. Wright Angular Power Spectra of the COBE DIRBE Maps , 1998 .

[21]  T. Hiroi,et al.  An improved scheme for modeling the reflectance spectra of space-weathered regoliths , 2008 .

[22]  J. Carvano,et al.  Distribution of taxonomic classes in the main belt of asteroids ? ? Based on observations made with , 2003 .

[23]  Hajime Yano,et al.  Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples , 2006, Science.

[24]  D. Brownlee,et al.  Major element composition of stratospheric micrometeorites , 1989 .

[25]  Takao Nakagawa,et al.  AKARI, a Light to Illuminate the Misty Universe , 2009 .

[26]  Samuel Harvey Moseley,et al.  COBE DIRBE near-infrared polarimetry of the zodiacal light: Initial results , 1994 .

[27]  Stuart Bowyer,et al.  The 1997 reference of diffuse night sky brightness , 1998 .

[28]  Dominic Benford,et al.  A New Era in Extragalactic Background Light Measurements: The Cosmic History of Accretion, Nucleosynthesis and Reionization , 2009, 0902.2372.

[29]  Richard V. Morris,et al.  Space weathering on airless bodies: Resolving a mystery with lunar samples , 2000 .

[30]  S. T. Megeath,et al.  Spectral Irradiance Calibration in the Infrared. XIII. “Supertemplates” and On-Orbit Calibrators for the SIRTF Infrared Array Camera , 2003, astro-ph/0304349.

[31]  H. Murakami,et al.  IRTS Observation of the Near-Infrared Spectrum of the Zodiacal Light , 1996 .

[32]  M. Kawada,et al.  Infrared Telescope in Space Observations of the Near-Infrared Extragalactic Background Light , 2004, astro-ph/0411593.

[33]  K. J. Meech,et al.  Spitzer Spectral Observations of the Deep Impact Ejecta , 2006, Science.

[34]  J. R. Houck,et al.  Origin of the Solar System dust bands discovered by IRAS , 1984, Nature.

[35]  Steven W. Brown,et al.  Spectral Irradiance and Radiance responsivity Calibrations using Uniform Sources (SIRCUS) facility at NIST , 2004, SPIE Optics + Photonics.

[36]  S. Dermott,et al.  The contribution of cometary dust to the zodiacal cloud , 1995 .

[37]  Masahiro Tanaka,et al.  Flight performance of the Near-Infrared Spectrometer , 1996, Optics & Photonics.

[38]  S. Okamura,et al.  Deep Extragalactic Surveys around the Ecliptic Poles with AKARI (ASTRO-F) , 2006, astro-ph/0605589.

[39]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: The Observations , 2002 .

[40]  E. L. Wright,et al.  The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. I. Limits and Detections , 1998, astro-ph/9806167.

[41]  F. J. Low,et al.  INFRARED CIRRUS - NEW COMPONENTS OF THE EXTENDED INFRARED-EMISSION , 1984 .