Approximating Mills ratio

[1]  F. Avram On Dümbgen's exponentially modified Laplace continued fraction for Mill's ratio , 2013, 1306.2989.

[2]  Warren J. Gross,et al.  A Chernoff-type Lower Bound for the Gaussian Q-function , 2012 .

[3]  A. Folkesson Analysis of numerical methods , 2011 .

[4]  Laurence B. Milstein,et al.  Chernoff-Type Bounds for the Gaussian Error Function , 2011, IEEE Transactions on Communications.

[5]  L. Duembgen Bounding Standard Gaussian Tail Probabilities , 2010, 1012.2063.

[6]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[7]  Christopher G. Small,et al.  Expansions and Asymptotics for Statistics , 2010 .

[8]  René L. Schilling,et al.  Bernstein Functions: Theory and Applications , 2010 .

[9]  P. Laplace Traité de mécanique céleste. Tome 1 , 2009 .

[10]  Par C. Sturm Mémoire sur la résolution des équations numériques , 2009 .

[11]  Annie A. M. Cuyt,et al.  Handbook of Continued Fractions for Special Functions , 2008 .

[12]  Árpád Baricz,et al.  Mills' ratio: Monotonicity patterns and functional inequalities , 2008 .

[13]  George K. Karagiannidis,et al.  An Improved Approximation for the Gaussian Q-Function , 2007, IEEE Communications Letters.

[14]  Inequalities related to the error function , 2006, math/0607694.

[15]  B. Conrad Impossibility theorems for elementary integration , 2005 .

[16]  Wlodzimierz Bryc,et al.  A uniform approximation to the right normal tail integral , 2002, Appl. Math. Comput..

[17]  MONOTONICITY PROPERTIES OF THE RELATIVE ERROR OF A PADÉ APPROXIMATION FOR MILLS’ RATIO , 2002 .

[18]  James H. Davenport,et al.  Integration in finite terms , 1984, SIGS.

[19]  P. Hall On the rate of convergence of normal extremes , 1979, Journal of Applied Probability.

[20]  D. E. Amos Bounds on iterated coerror functions and their ratios , 1973 .

[21]  H. McKean,et al.  Diffusion processes and their sample paths , 1996 .

[22]  P. Laplace,et al.  Traité de mécanique céleste , 1967 .

[23]  W. D. Ray,et al.  Chebyshev Polynomial and Other New Approximations to Mills' Ratio , 1963 .

[24]  B. Harshbarger An Introduction to Probability Theory and its Applications, Volume I , 1958 .

[25]  L. R. Shenton,et al.  INEQUALITIES FOR THE NORMAL INTEGRAL INCLUDING A NEW CONTINUED FRACTION , 1954 .

[26]  M. Sampford Some Inequalities on Mill's Ratio and Related Functions , 1953 .

[27]  W. Feller An Introduction to Probability Theory and Its Applications , 1959 .

[28]  Z. Birnbaum Effect of Linear Truncation on a Multinormal Population , 1950 .

[29]  Z. W. Birnbaum,et al.  An Inequality for Mill's Ratio , 1942 .

[30]  John P. Mills TABLE OF THE RATIO: AREA TO BOUNDING ORDINATE, FOR ANY PORTION OF NORMAL CURVE , 1926 .

[31]  E. Laguerre,et al.  Sur la réduction en fractions continues d'une fraction qui satisfait à une équation différentielle linéaire du premier ordre dont les coefficients sont rationnels , 1885 .

[32]  Joseph Liouville Mémoire sur l'intégration d'une classe de fonctions transcendantes. , 1835 .