Approximating Mills ratio
暂无分享,去创建一个
[1] F. Avram. On Dümbgen's exponentially modified Laplace continued fraction for Mill's ratio , 2013, 1306.2989.
[2] Warren J. Gross,et al. A Chernoff-type Lower Bound for the Gaussian Q-function , 2012 .
[3] A. Folkesson. Analysis of numerical methods , 2011 .
[4] Laurence B. Milstein,et al. Chernoff-Type Bounds for the Gaussian Error Function , 2011, IEEE Transactions on Communications.
[5] L. Duembgen. Bounding Standard Gaussian Tail Probabilities , 2010, 1012.2063.
[6] Ronald F. Boisvert,et al. NIST Handbook of Mathematical Functions , 2010 .
[7] Christopher G. Small,et al. Expansions and Asymptotics for Statistics , 2010 .
[8] René L. Schilling,et al. Bernstein Functions: Theory and Applications , 2010 .
[9] P. Laplace. Traité de mécanique céleste. Tome 1 , 2009 .
[10] Par C. Sturm. Mémoire sur la résolution des équations numériques , 2009 .
[11] Annie A. M. Cuyt,et al. Handbook of Continued Fractions for Special Functions , 2008 .
[12] Árpád Baricz,et al. Mills' ratio: Monotonicity patterns and functional inequalities , 2008 .
[13] George K. Karagiannidis,et al. An Improved Approximation for the Gaussian Q-Function , 2007, IEEE Communications Letters.
[14] Inequalities related to the error function , 2006, math/0607694.
[15] B. Conrad. Impossibility theorems for elementary integration , 2005 .
[16] Wlodzimierz Bryc,et al. A uniform approximation to the right normal tail integral , 2002, Appl. Math. Comput..
[17] MONOTONICITY PROPERTIES OF THE RELATIVE ERROR OF A PADÉ APPROXIMATION FOR MILLS’ RATIO , 2002 .
[18] James H. Davenport,et al. Integration in finite terms , 1984, SIGS.
[19] P. Hall. On the rate of convergence of normal extremes , 1979, Journal of Applied Probability.
[20] D. E. Amos. Bounds on iterated coerror functions and their ratios , 1973 .
[21] H. McKean,et al. Diffusion processes and their sample paths , 1996 .
[22] P. Laplace,et al. Traité de mécanique céleste , 1967 .
[23] W. D. Ray,et al. Chebyshev Polynomial and Other New Approximations to Mills' Ratio , 1963 .
[24] B. Harshbarger. An Introduction to Probability Theory and its Applications, Volume I , 1958 .
[25] L. R. Shenton,et al. INEQUALITIES FOR THE NORMAL INTEGRAL INCLUDING A NEW CONTINUED FRACTION , 1954 .
[26] M. Sampford. Some Inequalities on Mill's Ratio and Related Functions , 1953 .
[27] W. Feller. An Introduction to Probability Theory and Its Applications , 1959 .
[28] Z. Birnbaum. Effect of Linear Truncation on a Multinormal Population , 1950 .
[29] Z. W. Birnbaum,et al. An Inequality for Mill's Ratio , 1942 .
[30] John P. Mills. TABLE OF THE RATIO: AREA TO BOUNDING ORDINATE, FOR ANY PORTION OF NORMAL CURVE , 1926 .
[31] E. Laguerre,et al. Sur la réduction en fractions continues d'une fraction qui satisfait à une équation différentielle linéaire du premier ordre dont les coefficients sont rationnels , 1885 .
[32] Joseph Liouville. Mémoire sur l'intégration d'une classe de fonctions transcendantes. , 1835 .