Contributions to sector-level carbon intensity change: An integrated decomposition analysis

[1]  Qunwei Wang,et al.  Factors driving energy consumption in China: A joint decomposition approach , 2018 .

[2]  B. W. Ang,et al.  Decomposing Aggregate CO2 Emission Changes with Heterogeneity: An Extended Production-theoretical Approach , 2018 .

[3]  Nan Liu,et al.  A regional analysis of carbon intensities of electricity generation in China , 2017 .

[4]  B. W. Ang,et al.  Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities , 2017 .

[5]  Chunping Xie,et al.  A comparison of carbon dioxide (CO2) emission trends among provinces in China , 2017 .

[6]  Qunwei Wang,et al.  What drives CO2 emissions from China’s civil aviation? An exploration using a new generalized PDA method , 2017 .

[7]  Qunwei Wang,et al.  Decomposition Analysis of Aggregate Energy Consumption in China: An Exploration Using a New Generalized PDA Method , 2017 .

[8]  Bin Su,et al.  Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues , 2017 .

[9]  Xin Yao,et al.  Decomposition analysis of factors affecting carbon dioxide emissions across provinces in China , 2017 .

[10]  Fei Wang,et al.  Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang , 2017 .

[11]  Dequn Zhou,et al.  Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey , 2016 .

[12]  Shuai Shao,et al.  Decoupling CO2 emissions and industrial growth in China over 1993–2013: The role of investment , 2016 .

[13]  B. W. Ang,et al.  A spatial–temporal decomposition approach to performance assessment in energy and emissions , 2016 .

[14]  Miklós Antal,et al.  How realistic is green growth? Sectoral-level carbon intensity versus productivity , 2016 .

[15]  B. W. Ang,et al.  Multi-region comparisons of emission performance: The structural decomposition analysis approach , 2016 .

[16]  B. Su,et al.  China's carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012 , 2016 .

[17]  Qi Duan,et al.  Decomposition analysis of factors driving CO2 emissions in Chinese provinces based on production-theoretical decomposition analysis , 2016, Natural Hazards.

[18]  Yrjo Ideal Log-change Index Numbers , 2016 .

[19]  Boqiang Lin,et al.  Emissions reduction in China׳s chemical industry – Based on LMDI , 2016 .

[20]  Jidong Kang,et al.  Changes in carbon intensity in China's industrial sector: Decomposition and attribution analysis , 2015 .

[21]  B. W. Ang,et al.  LMDI decomposition approach: A guide for implementation , 2015 .

[22]  Yi-Ming Wei,et al.  Can China achieve its carbon intensity target by 2020 while sustaining economic growth , 2015 .

[23]  Boqiang Lin,et al.  Understanding the rapid growth of China's energy consumption: A comprehensive decomposition framework , 2015 .

[24]  B. W. Ang,et al.  Multiplicative decomposition of aggregate carbon intensity change using input–output analysis , 2015 .

[25]  Yung‐ho Chiu,et al.  Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis , 2015 .

[26]  Rao Rao,et al.  Exploring the drivers to energy-related carbon emissions changes at China’s provincial levels , 2015 .

[27]  B. W. Ang,et al.  Multi-country comparisons of energy performance: The index decomposition analysis approach , 2015 .

[28]  Boqiang Lin,et al.  Decomposing energy intensity change: A combination of index decomposition analysis and production-theoretical decomposition analysis , 2014 .

[29]  Erik Dietzenbacher,et al.  A structural decomposition analysis of the emissions embodied in trade , 2014 .

[30]  B. W. Ang,et al.  Attribution of changes in the generalized Fisher index with application to embodied emission studies , 2014 .

[31]  B. W. Ang,et al.  Input–output analysis of CO2 emissions embodied in trade: A multi-region model for China , 2014 .

[32]  Ki-Hong Choi,et al.  Extended Divisia index decomposition of changes in energy intensity: A case of Korean manufacturing industry , 2014 .

[33]  Manuel Landajo,et al.  The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010 , 2013 .

[34]  B. W. Ang,et al.  Index decomposition analysis applied to CO2 emission studies , 2013 .

[35]  Xingping Zhang,et al.  Decomposing the change of CO2 emissions: A joint production theoretical approach , 2013 .

[36]  Yue-Jun Zhang,et al.  Decomposing the changes of energy-related carbon emissions in China: evidence from the PDA approach , 2013, Natural Hazards.

[37]  B. W. Ang,et al.  Input–output analysis of CO2 emissions embodied in trade and the driving forces: Processing and normal exports , 2013 .

[38]  Min Zhou,et al.  Decomposition analysis of CO2 emissions from electricity generation in China , 2013 .

[39]  Manuel Martinez,et al.  Changes in CO2 emission intensities in the Mexican industry , 2012 .

[40]  Yeonbae Kim,et al.  International comparison of industrial CO2 emission trends and the energy efficiency paradox utilizing production-based decomposition , 2012 .

[41]  Jiahai Yuan,et al.  Decomposition of aggregate CO2 emissions within a joint production framework , 2012 .

[42]  B. W. Ang,et al.  Structural decomposition analysis applied to energy and emissions: Some methodological developments , 2012 .

[43]  B. W. Ang,et al.  Attribution of changes in Divisia real energy intensity index — An extension to index decomposition analysis , 2012 .

[44]  Zhongfu Tan,et al.  Examining the driving forces for improving China’s CO2 emission intensity using the decomposing method , 2011 .

[45]  Shiyi Chen The Abatement of Carbon Dioxide Intensity in China: Factors Decomposition and Policy Implications , 2011 .

[46]  Fu Hao Energy Consumption,Carbon Emission and Industrial Economical Growth in China——An Empirical Analysis Based on Decoupling Theory , 2011 .

[47]  Man Li,et al.  Decomposing the change of CO2 emissions in China: A distance function approach , 2010 .

[48]  B. W. Ang,et al.  Decomposition of aggregate CO2 emissions: A production-theoretical approach , 2008 .

[49]  Chunhua Wang,et al.  Decomposing energy productivity change: A distance function approach , 2007 .

[50]  Rolf Färe,et al.  Pollution abatement activities and traditional productivity , 2007 .

[51]  B. W. Ang,et al.  Handling zero values in the logarithmic mean Divisia index decomposition approach , 2007 .

[52]  Carl A. Pasurka,et al.  Decomposing electric power plant emissions within a joint production framework , 2006 .

[53]  N. H. Ravindranath,et al.  2006 IPCC Guidelines for National Greenhouse Gas Inventories , 2006 .

[54]  B. W. Ang,et al.  Decomposition analysis for policymaking in energy:: which is the preferred method? , 2004 .

[55]  J. C. J. M. Bergh,et al.  Comparing structural decomposition analysis and index , 2003 .

[56]  R. Färe,et al.  Accounting for Air Pollution Emissions in Measures of State Manufacturing Productivity Growth , 2001 .

[57]  B. W. Ang,et al.  A survey of index decomposition analysis in energy and environmental studies , 2000 .

[58]  B. W. Ang,et al.  Factorizing changes in energy and environmental indicators through decomposition , 1998 .

[59]  B. W. Ang,et al.  Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method , 1997 .

[60]  Adam Rose,et al.  INPUT-OUTPUT STRUCTURAL DECOMPOSITION ANALYSIS: A CRITICAL APPRAISAL , 1996 .

[61]  Rolf Färe,et al.  Productivity and Undesirable Outputs: A Directional Distance Function Approach , 1995 .

[62]  C.A.K. Lovell,et al.  Multilateral Productivity Comparisons When Some Outputs are Undesirable: A Nonparametric Approach , 1989 .

[63]  中華人民共和国国家統計局 China statistical yearbook , 1988 .

[64]  Kazuo Sato The Ideal Log-Change Index Number , 1976 .

[65]  I. Fisher,et al.  The Mathematical Problem of the Price Index. , 1937 .