Effect of the calcination temperature on temperature coefficient of resistance and magnetoresistance of La0.67Ca0.33MnO3 polycrystalline ceramics

[1]  Xiaojing Wang,et al.  Structure and electromagnetic properties of La0.7Ca0.3-K MnO3 polycrystalline ceramics , 2019, Ceramics International.

[2]  M. Z. Hu,et al.  Effect of sintering temperature on structural, magnetic and electrical transport properties of La 0.67 Ca 0.33 MnO 3 ceramics prepared by Plasma Activated Sintering , 2018 .

[3]  Qingming Chen,et al.  Effects of silver doping on structure and electrical properties of La 0.67 Ca 0.23 K 0.1 MnO 3 polycrystalline ceramic , 2018 .

[4]  Qingming Chen,et al.  Effects of A-site cationic radius and cationic disorder on the electromagnetic properties of La0.7Ca0.3MnO3 ceramic with added Sr, Pb, and Ba , 2017 .

[5]  Qingming Chen,et al.  Fabrication of LaxNd0.67−xSr0.33MnO3 polycrystalline ceramics by sol–gel method , 2016, Journal of Sol-Gel Science and Technology.

[6]  M. Rashad,et al.  Tailoring optical, magnetic and electric behavior of lanthanum strontium manganite La1−xSrxMnO3 (LSM) nanopowders prepared via a co-precipitation method with different Sr2+ ion contents , 2016 .

[7]  M. Oumezzine,et al.  Effect of synthesis techniques on structural, magnetocaloric and critical behavior of Pr0.6Ca0.1Sr0.3Mn0.975Fe0.025O3 manganites , 2015 .

[8]  Qiang-sheng Wang,et al.  Enhanced Electrical Properties of La$$_{0.7}$$0.7(Ca$$_{0.2}$$0.2Sr$$_{0.1}$$0.1) MnO$$_{3}$$3 Polycrystalline Composites with Ag Addition , 2015 .

[9]  A. Rao,et al.  Effect of Ba substitution on structural, electrical and thermal properties of La0.65Ca0.35−xBaxMnO3 (0 ⩽ x ⩽ 0.25) manganites , 2015 .

[10]  Qingming Chen,et al.  High TCR (temperature coefficient of resistance) La2/3Ca1/3MnO3:Agx polycrystalline composites , 2013 .

[11]  Qingming Chen,et al.  Influence of synthesis methods and calcination temperature on electrical properties of La1−xCaxMnO3 (x=0.33 and 0.28) ceramics , 2013 .

[12]  S. Khan,et al.  Adiabatic to non adiabatic change in conduction mechanism of Zn doped La0.67Sr0.33MnO3 perovskite , 2013 .

[13]  J. Yi,et al.  Study of Structural and Electrical Transport Properties of Polycrystalline La1-XCaXMnO3 (x=0.33, 0.5 and 0.9) Prepared by a Co-Precipitation Method , 2013 .

[14]  S. Atalay,et al.  Electrical Transport and Magnetoresistance of La 0.67 Ca 0.33 MnO 3 : Ag x (x = 0, 0.1, 0.2, 0.3, 0.4) Composites , 2012 .

[15]  Li-Min Wang,et al.  Correlation of the temperature coefficient of resistivity for doped manganites to the transition temperature, polaron binding energy, and magnetic order , 2012 .

[16]  J. Bhalodia,et al.  Calcination temperature effect on La0.67Ca0.33MnO3 nanoparticle using simple citrate pyrolysis process , 2011 .

[17]  D. H. Manh,et al.  Low-field magnetoresistance of La0.7Ca0.3MnO3 perovskite synthesized by reactive milling method , 2010 .

[18]  Z. Jagličić,et al.  The influence of the heat treatment on the structural and magnetic properties of nanoparticle La0.7Ca0.3MnO3 prepared by glycine–nitrate method , 2010 .

[19]  Ming-xia Xu,et al.  Effect of dispersant on preparation of barium–strontium titanate powders through oxalate co-precipitation method , 2009 .

[20]  E. Takayama-Muromachi,et al.  Magneto-transport of high TCR (temperature coefficient of resistance) La2/3Ca1/3MnO3 : Ag polycrystalline composites , 2006, cond-mat/0609364.

[21]  She-huang Wu,et al.  Preparation of LiNi0.8CO0.2O2-based cathode materials for lithium batteries by a co-precipitation method , 2005 .

[22]  P. N. Lisboa-Filho,et al.  Influence of processing conditions on the crystal structure and magnetic behavior of La0.7Ca0.3MnO3±δ samples , 2003 .

[23]  S. Mathur,et al.  Structural and Physical Properties of La2/3Ca1/3MnO3 Prepared via a Modified Sol-Gel Method , 2002 .

[24]  Chunhua Yan,et al.  Low temperature synthesis and magnetism of La0.75Ca0.25MnO3 nanoparticles , 2000 .

[25]  M. Lees,et al.  INSULATOR-METAL TRANSITIONS IN PR0.7CA0.3MNO3 INDUCED BY A MAGNETIC FIELD , 1996 .

[26]  W. Gallagher,et al.  Colossal magnetoresistance of 1 000 000‐fold magnitude achieved in the antiferromagnetic phase of La1−xCaxMnO3 , 1995 .

[27]  Peng,et al.  Dependence of giant magnetoresistance on oxygen stoichiometry and magnetization in polycrystalline La0.67Ba0.33MnOz. , 1995, Physical review. B, Condensed matter.

[28]  Albert Fert,et al.  Layered Magnetic Structures: Interlayer Exchange Coupling and Giant Magnetoresistance , 1995 .

[29]  B. Abeles,et al.  Tunneling of Spin-Polarized Electrons and Magnetoresistance in Granular Ni Films , 1976 .

[30]  R. Hunt A magnetoresistive readout transducer , 1970 .

[31]  J. Kanamori,et al.  Superexchange interaction and symmetry properties of electron orbitals , 1959 .

[32]  Clarence Zener,et al.  Interaction between the d -Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure , 1951 .

[33]  J. H. van Santen,et al.  Ferromagnetic compounds of manganese with perovskite structure , 1950 .

[34]  M. Ausloos,et al.  Electrical transport and magnetic properties of Mn3O4-La0.7Ca0.3MnO3 ceramic composites prepared by a one-step spray-drying technique , 2007 .

[35]  S. Jiang,et al.  Interaction between metallic interconnect and constituent oxides of (La, Sr)MnO3 coating of solid oxide fuel cells , 2006 .