INELASTIC INTERACTION OF BOUSSINESQ SOLITONS
暂无分享,去创建一个
Two improved versions of Boussinesq equation (Boussinesq paradigm) have been considered which are well-posed (correct in the sense of Hadamard) as an initial value problem: the Proper Boussinesq Equation (PBE) and the Regularized Long Wave Equation (RLWE). Fully implicit difference schemes have been developed strictly representing, on difference level, the conservation or balance laws for the mass, pseudoenergy or pseudomomentum of the wave system. Thresholds of possible nonlinear blow-up are identified for both PBE and RLWE. The head-on collisions of solitary waves of the sech type (Boussinesq solitons) have been investigated. They are subsonic and negative (surface depressions) for PBE and supersonic and positive (surface elevations) for RLWE. The numerically recovered sign and sizes of the phase shifts are in very good quantitative agreement with analytical results for the two-soliton solution of PBE. The subsonic surface elevations are found to be not permanent but to gradually transform into oscillatory pulses whose support increases and amplitude decreases with time although the total pseudoenergy is conserved within 10−10. The latter allows us to claim that the pulses are solitons despite their “aging” (which is felt on times several times the time-scale of collision). For supersonic phase speeds, the collision of Boussinesq solitons has inelastic character exhibiting not only a significant phase shift but also a residual signal of sizable amplitude but negligible pseudoenergy. The evolution of the residual signal is investigated numerically for very long times.