Impact of Cu–Au type domains in high current density CuInS2 solar cells

Abstract In this work, a series of stain steel 15×15 cm 2 CuInS 2 solar cells with efficiencies close to the record one for this kind of devices, are analyzed. Through a careful and comprehensive study of the structural and electronic properties of the CuInS 2 layer, we show that in a general fashion the strain originated by the thermal annealing affects the energy band splitting and reduces the short circuit current. Then, through an innovative combination of photoreflectance and Raman scattering analysis, we demonstrate that the presence of CuAu domains in the bulk layer of a CuInS 2 is directly related with this strain reduction contributing to the improvement of short circuit current. We propose that the presence Cu–Au phase domains reduce the strain within the CuInS 2 layer, and improve the quality of the CIS chalcopyrite crystals, leading to reduced carrier recombination while increasing carriers mobility. As a consequence we conclude that the presence of said domains improves the short circuit current in the studied devices.

[1]  Fred H. Pollak,et al.  Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices , 1993 .

[2]  J. Álvarez-García,et al.  Analysis of sulphurisation processes of electrodeposited S-rich CuIn(S,Se)2 layers for photovoltaic applications , 2009 .

[3]  H. Metzner,et al.  Order and disorder in epitaxially grown CuInS2 , 2001 .

[4]  M. Lux‐Steiner,et al.  Raman and photoreflectance study of CuIn1 − xGaxSe2 epitaxial layers , 2006 .

[5]  Thin-film intermediate band chalcopyrite solar cells , 2009 .

[6]  J. Conesa,et al.  Thermodynamics of the Formation of Ti-and Cr-doped CuGaS2 Intermediate-band Photovoltaic Materials , 2008 .

[7]  D. Su,et al.  Transmission electron microscopy investigation and first-principles calculation of the phase stability in epitaxial CuInS2 and CuGaSe2 films , 1999 .

[8]  J. Morante,et al.  Vibrational and crystalline properties of polymorphic CuInC2 (C=Se,S) chalcogenides , 2005 .

[9]  David E. Aspnes,et al.  Third-derivative modulation spectroscopy with low-field electroreflectance , 1973 .

[10]  H. Schock,et al.  Locally resolved surface photo voltage spectroscopy on Zn-doped CuInS2 polycrystalline thin films , 2009 .

[11]  T. Anderson,et al.  Epitaxial growth and characterization of CuInSe2 crystallographic polytypes , 2002 .

[12]  S. Nishiwaki,et al.  Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules , 2012, 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2.

[13]  M. Bettini,et al.  Zone‐centered phonons in AIBIIIS2 chalcopyrites , 1975 .

[14]  M. I. Alonso,et al.  Optical functions and electronic structure of CuInSe 2 , CuGaSe 2 , CuInS 2 , and CuGaS 2 , 2001 .

[15]  J. Wienke,et al.  CISCuT––solar cells and modules on the basis of CuInS2 on Cu-tape , 2004 .

[16]  J. Plaza,et al.  Photoluminescence-free photoreflectance spectra using dual frequency modulation , 2007 .

[17]  U. Reislöhner,et al.  Metastability of CuInS2 and its implications on thin-film growth , 2006 .

[18]  D. Abou‐Ras,et al.  Phonon confinement and strain in CuInS2 , 2008 .

[19]  B. Arora,et al.  Photoreflectance spectroscopy with white light pump beam , 1998 .

[20]  R. Klenk,et al.  Band-gap energies and strain effects in CuIn1−xGaxS2 based solar cells , 2007 .

[21]  A. Pérez‐Rodríguez,et al.  Raman scattering analysis of electrodeposited Cu(In,Ga)Se2 solar cells: Impact of ordered vacancy compounds on cell efficiency , 2014 .

[22]  U. Reislöhner,et al.  Excitonic luminescence of polycrystalline CuInS2 solar cell material under the influence of strain , 2007 .

[23]  Ludovic Escoubas,et al.  Understanding CIGS device performances through photoreflectance spectroscopy , 2012, Other Conferences.

[24]  T. Sebastian,et al.  Non-destructive evaluation of carrier transport properties in CuInS2 and CuInSe2 thin films using photothermal deflection technique , 2010 .

[25]  J. Álvarez-García,et al.  Analysis of S-rich CuIn(S,Se)2 layers for photovoltaic applications: Influence of the sulfurization temperature on the crystalline properties of electrodeposited and sulfurized CuInSe2 precursors , 2008 .

[26]  J. Morante,et al.  Microstructure and secondary phases in coevaporated CuInS2 films: Dependence on growth temperature and chemical composition , 2001 .

[27]  A. Pérez‐Rodríguez,et al.  Impact of electronic defects on the Raman spectra from electrodeposited Cu(In,Ga)Se2 solar cells: Application for non-destructive defect assessment , 2013 .

[28]  H. Schock,et al.  Cu2‐xS Surface Phases and Their Impact on the Electronic Structure of CuInS2 Thin Films – A Hidden Parameter in Solar Cell Optimization , 2013 .

[29]  A. Pérez‐Rodríguez,et al.  Key role of Cu–Se binary phases in electrodeposited CuInSe2 precursors on final distribution of Cu–S phases in CuIn(S,Se)2 absorbers , 2009 .

[30]  A. Chuvilin,et al.  Epitaxial and polycrystalline CuInS2 layers: Structural metastability and its influence on the photoluminescence , 2009 .

[31]  Reiner Klenk,et al.  Efficient CuInS2 solar cells from a rapid thermal process (RTP) , 2001 .

[32]  D. Bräunig,et al.  Electroreflectance of CuInS2 thin film solar cells and dependence on process parameters , 2001 .

[33]  Steven S. Hegedus,et al.  Thin‐film solar cells: device measurements and analysis , 2004 .

[34]  Joan Ramon Morante,et al.  Process monitoring of chalcopyrite photovoltaic technologies by Raman spectroscopy: an application to low cost electrodeposition based processes , 2011 .