暂无分享,去创建一个
[1] Anne Greenbaum,et al. Predicting the Behavior of Finite Precision Lanczos and Conjugate Gradient Computations , 2015, SIAM J. Matrix Anal. Appl..
[2] Gérard Meurant. Multitasking the conjugate gradient method on the CRAY X-MP/48 , 1987, Parallel Comput..
[3] Anthony T. Chronopoulos,et al. On the efficient implementation of preconditioned s-step conjugate gradient methods on multiprocessors with memory hierarchy , 1989, Parallel Comput..
[4] Anthony T. Chronopoulos,et al. s-step iterative methods for symmetric linear systems , 1989 .
[5] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[6] A. Greenbaum. Comparison of splittings used with the conjugate gradient algorithm , 1979 .
[7] Gérard Meurant. On prescribing the convergence behavior of the conjugate gradient algorithm , 2019, Numerical Algorithms.
[8] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[9] W. Marsden. I and J , 2012 .
[10] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[11] Miroslav Tuma,et al. The Numerical Stability Analysis of Pipelined Conjugate Gradient Methods: Historical Context and Methodology , 2018, SIAM J. Sci. Comput..
[12] C. Paige. Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem , 1980 .
[13] Z. Strakos,et al. On error estimation in the conjugate gradient method and why it works in finite precision computations. , 2002 .
[14] Christopher C. Paige,et al. An Augmented Stability Result for the Lanczos Hermitian Matrix Tridiagonalization Process , 2010, SIAM J. Matrix Anal. Appl..
[15] Iain S. Duff,et al. Users' guide for the Harwell-Boeing sparse matrix collection (Release 1) , 1992 .
[16] Anne Greenbaum,et al. Using Nonorthogonal Lanczos Vectors in the Computation of Matrix Functions , 1998, SIAM J. Sci. Comput..
[17] Christopher C. Paige,et al. The computation of eigenvalues and eigenvectors of very large sparse matrices , 1971 .
[18] Y. Saad,et al. Practical Use of Polynomial Preconditionings for the Conjugate Gradient Method , 1985 .
[19] Emmanuel Agullo,et al. Analyzing the Effect of Local Rounding Error Propagation on the Maximal Attainable Accuracy of the Pipelined Conjugate Gradient Method , 2016, SIAM J. Matrix Anal. Appl..
[20] Y. Saad,et al. Krylov Subspace Methods on Supercomputers , 1989 .
[21] Wim Vanroose,et al. Numerically Stable Variants of the Communication-hiding Pipelined Conjugate Gradients Algorithm for the Parallel Solution of Large Scale Symmetric Linear Systems , 2017, ArXiv.
[22] Jeffrey Cornelis,et al. Numerically Stable Recurrence Relations for the Communication Hiding Pipelined Conjugate Gradient Method , 2019, IEEE Transactions on Parallel and Distributed Systems.
[23] A. Greenbaum. Estimating the Attainable Accuracy of Recursively Computed Residual Methods , 1997, SIAM J. Matrix Anal. Appl..
[24] CHRISTOPHER C. PAIGE,et al. Accuracy of the Lanczos Process for the Eigenproblem and Solution of Equations , 2019, SIAM J. Matrix Anal. Appl..
[25] Aaron Sidford,et al. Stability of the Lanczos Method for Matrix Function Approximation , 2017, SODA.
[26] A. Greenbaum. Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences , 1989 .
[27] Tsuyoshi Murata,et al. {m , 1934, ACML.
[28] John Van Rosendale. Minimizing Inner Product Data Dependencies in Conjugate Gradient Iteration , 1983, ICPP.
[29] Wim Vanroose,et al. The Impact of Global Communication Latency at Extreme Scales on Krylov Methods , 2012, ICA3PP.
[30] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.
[31] Wim Vanroose,et al. Hiding global synchronization latency in the preconditioned Conjugate Gradient algorithm , 2014, Parallel Comput..