Outdoor meteorological effects on UHF RFID phase shift: Experimental simulations

The present study investigates meteorological factors that affect the phase of RFID passive tags at 868 MHz, in outdoor conditions. The study identifies the effect of the water on the antennas, the temperature of the cables and tags, the moisture of the tag support, and the atmospheric conditions. These effects could lead to over 8 radians phase drift, over a year in a typical environment. That leads to a possible yearly error of 20 centimeters in a typical outdoor ranging application. The article proposes techniques to correct those effects, in order to increase the accuracy of phase-based outdoor monitoring applications.

[1]  Gisele Bennett,et al.  RFID testing and evaluation for an RF-harsh environment , 2011, 2011 IEEE International Conference on RFID-Technologies and Applications.

[2]  Reza Malekian,et al.  TrackT: Accurate tracking of RFID tags with mm-level accuracy using first-order taylor series approximation , 2016, Ad Hoc Networks.

[3]  Tord Isaksson,et al.  Moisture content prediction of rain-exposed wood: Test and evaluation of a simple numerical model for durability applications , 2016 .

[4]  C. Lucianaz,et al.  Real time outdoor localization of buried RFID tags through statistical methods , 2015, 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA).

[5]  D. B. Herrmann,et al.  The density dependence of the dielectric constant of polyethylene , 1958 .

[6]  Roy Want,et al.  Enabling ubiquitous sensing with RFID , 2004, Computer.

[7]  Weiping Zhu,et al.  Accurate and Efficient Object Tracking Based on Passive RFID , 2015, IEEE Transactions on Mobile Computing.

[8]  Emidio DiGiampaolo,et al.  Wireless Crack Monitoring by Stationary Phase Measurements from Coupled RFID Tags , 2014, IEEE Transactions on Antennas and Propagation.

[9]  Martin Vossiek,et al.  UHF RFID Localization Based on Synthetic Apertures , 2013, IEEE Transactions on Automation Science and Engineering.

[10]  M. Pastor,et al.  A landslide forecasting model using ground based SAR data: The Portalet case study , 2009 .

[11]  Ben Abbott,et al.  Precise positioning with wireless sensor nodes: Monitoring natural hazards in all terrains , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[12]  B. Kippelen,et al.  RF Tag Antenna Performance on Various Materials Using Radio Link Budgets , 2006, IEEE Antennas and Wireless Propagation Letters.

[13]  Enrique Valero,et al.  Integration of RFID with other technologies in construction , 2016 .

[14]  Wlodzimierz Zieniutycz,et al.  Effect of time varying measurement conditions on antenna pattern in near field measurement and its correction procedure , 2014, 2014 20th International Conference on Microwaves, Radar and Wireless Communications (MIKON).

[15]  Robert Weigel,et al.  The Roots, Rules, and Rise of RFID , 2010, IEEE Microwave Magazine.

[16]  M. Provansal,et al.  Coupling channel evolution monitoring and RFID tracking in a large, wandering, gravel-bed river: Insights into sediment routing on geomorphic continuity through a riffle–pool sequence , 2015 .

[17]  Manos M. Tentzeris,et al.  RFID-Based Wireless Passive Sensors Utilizing Cork Materials , 2015, IEEE Sensors Journal.

[18]  Andreas Stelzer,et al.  UHF RFID Localization Based on Phase Evaluation of Passive Tag Arrays , 2015, IEEE Transactions on Instrumentation and Measurement.

[19]  Rahul Bhattacharyya,et al.  Towards pervasive soil moisture sensing using RFID tag antenna-based sensors , 2015, 2015 IEEE International Conference on RFID Technology and Applications (RFID-TA).

[20]  L. Ukkonen,et al.  Reliability Analysis of RFID Tags in Changing Humid Environment , 2014, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[21]  Aly E. Fathy,et al.  Performance of flexible antennas with protective super-hydrophobic coating layers at RF frequencies , 2016, 2016 IEEE Radio and Wireless Symposium (RWS).

[22]  C. Di Natale,et al.  Humidity Sensing by Polymer-Loaded UHF RFID Antennas , 2012, IEEE Sensors Journal.

[23]  V. Chandrasekar,et al.  A Drop Size Distribution (DSD)-Based Model for Evaluating the Performance of Wet Radomes for Dual-Polarized Radars , 2014 .

[24]  Jinlan Gao,et al.  Printed Electromagnetic Coupler With an Embedded Moisture Sensor for Ordinary Passive RFID Tags , 2011, IEEE Electron Device Letters.

[25]  Gang Li,et al.  Where is the Tag? , 2011, IEEE Microwave Magazine.

[26]  Carl T. Haas,et al.  Using reference RFID tags for calibrating the estimated locations of construction materials , 2011 .

[27]  Sathyaveer Prasad,et al.  Impact of Moisture Content on RFID Antenna Performance for Wood-Log Monitoring , 2011 .

[28]  Gregory D. Durgin,et al.  Hybrid Inertial Microwave Reflectometry for mm-Scale Tracking in RFID Systems , 2015, IEEE Transactions on Wireless Communications.

[29]  C. Lucianaz,et al.  Localization of RFID tags for environmental monitoring using UAV , 2015, 2015 IEEE 1st International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI).

[30]  L. Ukkonen,et al.  Passive UHF RFID Tag for Heat Sensing Applications , 2012, IEEE Transactions on Antennas and Propagation.

[31]  J. M. Vergnaud,et al.  Modeling the kinetics of moisture adsorption by wood , 1988, Wood Science and Technology.

[32]  Cherish Bauer-Reich,et al.  An investigation of the viability of UHF RFID for subsurface soil sensors , 2014, IEEE International Conference on Electro/Information Technology.

[33]  Sanna Lahokallio,et al.  Performance of passive RFID tags in a high temperature cycling test , 2014, Proceedings of the 5th Electronics System-integration Technology Conference (ESTC).

[34]  Carlos H. Caldas,et al.  A proximity-based method for locating RFID tagged objects , 2007, Adv. Eng. Informatics.

[35]  Gregory D. Durgin,et al.  Amplitude and phase difference estimation bounds for multisensor based tracking of RFID Tags , 2015, 2015 IEEE International Conference on RFID (RFID).

[36]  Juha Virtanen,et al.  Inkjet-Printed Humidity Sensor for Passive UHF RFID Systems , 2011, IEEE Transactions on Instrumentation and Measurement.

[37]  Chenming Zhou,et al.  Accurate Phase-Based Ranging Measurements for Backscatter RFID Tags , 2012, IEEE Antennas and Wireless Propagation Letters.

[38]  J. Arbuthnott,et al.  Variation of the electrical length of coaxial transmission lines with temperature , 1960 .

[39]  Tolga Aytug,et al.  Superhydrophobic materials and coatings: a review , 2015, Reports on progress in physics. Physical Society.

[40]  Michael R. Souryal,et al.  RFID-based localization and tracking technologies , 2011, IEEE Wireless Communications.

[41]  DIELECTRIC PROPERTIES OF WOOD AND HARDBOARD: VARIATION WITH TEMPERATURE, FREQUENCY, MOISTURE CONTENT, AND GRAIN ORIENTATION , 2005 .

[42]  Atef Z. Elsherbeni,et al.  High-sensitivity RFID sensing antennas: From sensing mechanism selections to antennas structure designs , 2014, 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS).

[43]  S. Dhawan,et al.  Understanding effect of teflon room temperature phase transition on coax cable delay in order to improve the measurement of TE signals of deuterated polarized targets , 1991, Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference.

[44]  S.E. Watkins,et al.  RFID Instrumentation in a Field Application , 2007, 2007 IEEE Region 5 Technical Conference.

[45]  P. Hudec,et al.  UHF RF Identification of People in Indoor and Open Areas , 2009, IEEE Transactions on Microwave Theory and Techniques.

[46]  Michel Jaboyedoff,et al.  Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event , 2009 .

[47]  Christophe Delacourt,et al.  Correlation of multi-temporal ground-based optical images for landslide monitoring: Application, potential and limitations , 2012 .

[48]  K. V. S. Rao,et al.  Phase based spatial identification of UHF RFID tags , 2010, 2010 IEEE International Conference on RFID (IEEE RFID 2010).

[49]  L. Ukkonen,et al.  RFID Tags for Challenging Environments: Flexible High-Dielectric Materials and Ink-Jet Printing Technology for Compact Platform Tolerant RFID Tags , 2013, IEEE Microwave Magazine.

[50]  J. Corominas,et al.  Using Global Positioning System techniques in landslide monitoring , 2000 .

[51]  Gaetano Marrocco,et al.  Phase-Oriented Sensing by Means of Loaded UHF RFID Tags , 2015, IEEE Transactions on Antennas and Propagation.

[52]  Athanasios N. Papanicolaou,et al.  Identification of the Burial Depth of Radio Frequency Identification Transponders in Riverine Applications , 2015 .

[53]  Xuezhi Zeng,et al.  Remote Moisture Sensing utilizing Ordinary RFID Tags , 2007, 2007 IEEE Sensors.

[54]  Liu Guocheng,et al.  EFFECTS OF TEMPERATURE AND HUMIDITY ON UHF RFID PERFORMANCE , 2011 .

[55]  Nemai C. Karmakar,et al.  Towards low-cost resolution optimized passive UHF RFID light sensing , 2014, WAMICON 2014.

[56]  G. Marrocco,et al.  Passive UHF RFID antennas for sensing applications: Principles, methods, and classifcations , 2013, IEEE Antennas and Propagation Magazine.

[57]  Daniel M. Dobkin,et al.  Environmental Effects on RFID Tag Antennas , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[58]  G. Zhang,et al.  Millimeter wave measurements of temperature dependence of complex permittivity of dielectric plates by the cavity resonance method , 1999, Proceedings of 1997 Asia-Pacific Microwave Conference.

[59]  Leena Ukkonen,et al.  Passive UHF RFID Tags in Arctic Environment , 2009 .

[60]  Enrique Valero,et al.  Evolution of RFID Applications in Construction: A Literature Review , 2014, UCAmI.

[61]  Matthieu Egels,et al.  A flexible UHF RFID tag for harsh environments , 2012, 2012 IEEE International Conference on RFID-Technologies and Applications (RFID-TA).

[62]  Johnny Wong,et al.  Real-time locating systems applications in construction , 2016 .

[63]  B. B. Balsley,et al.  On the scattering and reflection mechanisms contributing to clear air radar echoes from the troposphere, stratosphere, and mesophere , 1980 .

[64]  Young Joong Yoon,et al.  Functional antenna integrated with relative humidity sensor using synthesised polyimide for passive RFID sensing , 2007 .

[65]  Johanna Virkki,et al.  Testing the effects of temperature and humidity on printed passive UHF RFID tags on paper substrate , 2014 .

[66]  M. Kurri,et al.  Measurements of the Transmission Loss of a Radome at Different Rain Intensities , 2008 .

[67]  R. Veeramani,et al.  High-frequency RFID tag survivability in harsh environments , 2013, 2013 IEEE International Conference on RFID (RFID).

[68]  Krzysztof Czuba,et al.  Temperature Stability of Coaxial Cables , 2011 .

[69]  Uttar Pradesh,et al.  Effects of Temperature Variations on Microstrip Antenna , 2013 .

[70]  Jonathan A. Warrick,et al.  Observations of coarse sediment movements on the mixed beach of the Elwha Delta, Washington , 2011 .

[71]  Sangkil Kim,et al.  An RFID-enabled inkjet-printed soil moisture sensor on paper for “smart” agricultural applications , 2014, IEEE SENSORS 2014 Proceedings.

[72]  Xiaolei Yu,et al.  A Novel Temperature Control System of Measuring the Dynamic UHF RFID Reading Performance , 2016, 2016 Sixth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC).

[73]  Lauri Sydanheimo,et al.  Impact of Moisture and Washing on the Performance of Embroidered UHF RFID Tags , 2013, IEEE Antennas and Wireless Propagation Letters.

[74]  Atef Z. Elsherbeni,et al.  UHF RFID temperature sensor tag using novel HDPE-BST composite material , 2013, 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[75]  Gaetano Marrocco,et al.  Pervasive electromagnetics: sensing paradigms by passive RFID technology , 2010, IEEE Wireless Communications.

[76]  Giovanni Emilio Perona,et al.  An ad-hoc RFID tag for glaciers monitoring , 2014 .