Template-free nanosized faujasite-type zeolites.

Nanosized faujasite (FAU) crystals have great potential as catalysts or adsorbents to more efficiently process present and forthcoming synthetic and renewable feedstocks in oil refining, petrochemistry and fine chemistry. Here, we report the rational design of template-free nanosized FAU zeolites with exceptional properties, including extremely small crystallites (10-15 nm) with a narrow particle size distribution, high crystalline yields (above 80%), micropore volumes (0.30 cm(3) g(-1)) comparable to their conventional counterparts (micrometre-sized crystals), Si/Al ratios adjustable between 1.1 and 2.1 (zeolites X or Y) and excellent thermal stability leading to superior catalytic performance in the dealkylation of a bulky molecule, 1,3,5-triisopropylbenzene, probing sites mostly located on the external surface of the nanosized crystals. Another important feature is their excellent colloidal stability, which facilitates a uniform dispersion on supports for applications in catalysis, sorption and thin-to-thick coatings.

[1]  Donald W. Breck,et al.  Zeolite Molecular Sieves: Structure, Chemistry, and Use , 1974 .

[2]  J. Gilson,et al.  Mesoporous ZSM-22 zeolite obtained by desilication: peculiarities associated with crystal morphology and aluminium distribution , 2011 .

[3]  V. Valtchev,et al.  Tailored Crystalline Microporous Materials by Post‐Synthesis Modification , 2013 .

[4]  A. Corma,et al.  2,6-Di-Tert-Butyl-Pyridine as a Probe Molecule to Measure External Acidity of Zeolites , 1998 .

[5]  Maryam Khaleel,et al.  On the rotational intergrowth of hierarchical FAU/EMT zeolites. , 2014, Angewandte Chemie.

[6]  W. Schirmer Molecular Transport and Reaction in Zeolites — Design and Application of Shape Selective Catalysis , 1995 .

[7]  H. Lechert G. Engelhardt und D. Michel: High Resolution Solid State NMR of Silicates and Zeolites. John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore, 1987. 485 Seiten, Preis: $ 55.–. , 1988 .

[8]  Krassimir N. Bozhilov,et al.  Transmission Electron Microscopy Study of the Formation of FAU-Type Zeolite at Room Temperature , 2004 .

[9]  D. Creaser,et al.  AN INVESTIGATION OF THE NUCLEATION/ CRYSTALLIZATION KINETICS OF NANOSIZED COLLOIDAL FAUJASITE ZEOLITES , 2002 .

[10]  Avelino Corma,et al.  Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes , 2011 .

[11]  V. Valtchev,et al.  Nanozeolites: Synthesis, Crystallization Mechanism, and Applications , 2005 .

[12]  Santi Kulprathipanja,et al.  Zeolites in industrial separation and catalysis , 2010 .

[13]  J. Newsam,et al.  Intergrowth segregation in FAU-EMT zeolite materials , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  D. Creaser,et al.  The nucleation period for crystallization of colloidal TPA-silicalite-1 with varying silica source , 2000 .

[15]  Z. Gabelica,et al.  Concerning the aluminum distribution gradient in ZSM-5 zeolites , 1981 .

[16]  Mary Anne White,et al.  Control of Particle Size and Surface Properties of Crystals of NaX Zeolite , 2002 .

[17]  J. Martens,et al.  Hydroisomerization of emerging renewable hydrocarbons using hierarchical Pt/H-ZSM-22 catalyst. , 2013, ChemSusChem.

[18]  Svetlana Mintova,et al.  Environmental syntheses of nanosized zeolites with high yield and monomodal particle size distribution , 2006 .

[19]  Huanting Wang,et al.  CONTROLLING SIZE AND YIELD OF ZEOLITE Y NANOCRYSTALS USING TETRAMETHYLAMMONIUM BROMIDE , 2003 .

[20]  W. Vermeiren,et al.  Impact of Zeolites on the Petroleum and Petrochemical Industry , 2009 .

[21]  Bein,et al.  Electron Microscopy Reveals the Nucleation Mechanism of Zeolite Y from Precursor Colloids. , 1999, Angewandte Chemie.

[22]  M. Dusselier,et al.  Will zeolite-based catalysis be as relevant in future biorefineries as in crude oil refineries? , 2014, Angewandte Chemie.

[23]  S. Larsen Nanocrystalline Zeolites and Zeolite Structures: Synthesis, Characterization, and Applications , 2007 .

[24]  J. P. Pariente,et al.  Zeolites and ordered porous solids: fundamentals and applications , 2011 .

[25]  Daniel Chateigner,et al.  Capturing Ultrasmall EMT Zeolite from Template-Free Systems , 2012, Science.

[26]  C. Tung,et al.  Inside Cover: Graphene‐Supported Ultrafine Metal Nanoparticles Encapsulated by Mesoporous Silica: Robust Catalysts for Oxidation and Reduction Reactions (Angew. Chem. Int. Ed. 1/2014) , 2014 .

[27]  Jean-Pierre Gilson,et al.  Zeolites for cleaner technologies , 2002 .

[28]  N. Chen,et al.  Molecular transport and reaction in zeolites: Design and application of shape selective catalysts , 1994 .

[29]  Metin Bulut,et al.  Overview and Industrial Assessment of Synthesis Strategies towards Zeolites with Mesopores , 2011 .

[30]  K. Rajagopalan,et al.  Influence of zeolite particle size on selectivity during fluid catalytic cracking , 1986 .

[31]  E. Derouane,et al.  On the external and intracrystalline surface catalytic activity of pentasil zeolites , 1984 .

[32]  R. M. Barrer,et al.  Hydrothermal Chemistry of Zeolites , 1982 .

[33]  B. Phillips,et al.  An in situ calorimetric study of the synthesis of FAU zeolite , 2001 .

[34]  K. Lücke,et al.  Textures of Materials , 1978 .

[35]  C. Perego,et al.  Biomass to fuels: The role of zeolite and mesoporous materials☆ , 2011 .

[36]  V. Valtchev,et al.  Mechanism of zeolite A nanocrystal growth from colloids at room temperature. , 1999, Science.

[37]  D. Michel,et al.  High-resolution solid-state NMR of silicates and zeolites , 1987 .

[38]  J. Domínguez,et al.  Synthesis of FAU(Y)- and MFI(ZSM5)-nanosized crystallites for catalytic cracking of 1,3,5-triisopropylbenzene , 2011 .