Realized volatility forecasting: Robustness to measurement errors

In this paper, we reconsider the issue of measurement errors affecting the estimates of a dynamic model for the conditional expectation of realized variance arguing that heteroskedasticity of such errors may be adequately represented with a multiplicative error model. Empirically we show that the significance of quarticity/quadratic terms capturing attenuation bias is very important within an HAR model, but is greatly diminished within an AMEM, and more so when regime specific dynamics account for a faster mean reversion when volatility is high. Model Confidence Sets confirm such robustness both in– and out–of–sample.

[1]  Fabrizio Cipollini,et al.  Multiplicative Error Models , 2011 .

[2]  R. Engle,et al.  A Multiple Indicators Model for Volatility Using Intra-Daily Data , 2003 .

[4]  C. Brownlees,et al.  Disentangling systematic and idiosyncratic dynamics in panels of volatility measures , 2014 .

[5]  A. Hurn,et al.  On the efficacy of techniques for evaluating multivariate volatility forecasts , 2012 .

[6]  R. Engle New Frontiers for Arch Models , 2002 .

[7]  Luca Benzoni,et al.  Realized Volatility , 2008 .

[8]  D. Ruppert,et al.  Measurement Error in Nonlinear Models , 1995 .

[9]  Michael W. Brandt,et al.  Range-Based Estimation of Stochastic Volatility Models , 2001 .

[10]  S. Mittnik,et al.  The Volatility of Realized Volatility , 2005 .

[11]  E. Otranto Asset allocation using flexible dynamic correlation models with regime switching , 2010 .

[12]  Christian T. Brownlees,et al.  Financial Econometric Analysis at Ultra-High Frequency: Data Handling Concerns , 2006, Comput. Stat. Data Anal..

[13]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[14]  F. Diebold,et al.  Chapter 15 Volatility and Correlation Forecasting , 2006 .

[15]  Giuseppe Buccheri,et al.  Hark the Shark: Realized Volatility Modelling with Measurement Errors and Nonlinear Dependencies , 2019 .

[16]  Giampiero M. Gallo,et al.  Comparison of Volatility Measures: A Risk Management Perspective , 2009 .

[17]  Fabrizio Cipollini,et al.  SEMIPARAMETRIC VECTOR MEM , 2013 .

[18]  Asger Lunde,et al.  Choosing the Best Volatility Models: The Model Confidence Set Approach , 2003 .

[19]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[20]  Fulvio Corsi,et al.  A Simple Approximate Long-Memory Model of Realized Volatility , 2008 .

[21]  E. Otranto,et al.  Forecasting realized volatility with changing average levels , 2015 .

[22]  M. J. Klass,et al.  On the Estimation of Security Price Volatilities from Historical Data , 1980 .

[23]  R. Chou,et al.  Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model , 2005 .

[24]  R. Whaley Understanding the VIX , 2009, The Journal of Portfolio Management.

[25]  Ernst Schaumburg,et al.  Federal Reserve Bank of New York Staff Reports Jump-robust Volatility Estimation Using Nearest Neighbor Truncation Jump-robust Volatility Estimation Using Nearest Neighbor Truncation , 2010 .

[26]  E. Otranto,et al.  Combining sharp and smooth transitions in volatility dynamics: a fuzzy regime approach , 2018 .

[27]  R. Engle,et al.  The Spline-Garch Model for Low Frequency Volatility and its Global Macroeconomic Causes , 2006 .

[28]  F. Diebold,et al.  Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility , 2005, The Review of Economics and Statistics.

[29]  M. Medeiros,et al.  A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries , 2008 .

[30]  N. Taylor,et al.  The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data , 2017 .

[31]  Peter Reinhard Hansen,et al.  A Winner's Curse for Econometric Models: On the Joint Distribution of In-Sample Fit and Out-of-Sample Fit and its Implications for Model Selection , 2010 .

[32]  Jeffrey R. Russell,et al.  Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data , 1998 .

[33]  Tim Bollerslev,et al.  Modeling and Forecasting (Un)Reliable Realized Covariances for More Reliable Financial Decisions , 2016, Journal of Econometrics.

[34]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[35]  Tim Bollerslev,et al.  Exploiting the errors: A simple approach for improved volatility forecasting , 2016 .

[36]  Peter Reinhard Hansen,et al.  The Model Confidence Set , 2010 .

[37]  Piotr Cofta,et al.  The Model of Confidence , 2007 .

[38]  Thomas H. McCurdy,et al.  Série Scientifique Scientific Series Nonlinear Features of Realized Fx Volatility Nonlinear Features of Realized Fx Volatility , 2022 .

[39]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[40]  Andrew J. Patton Volatility Forecast Comparison Using Imperfect Volatility Proxies , 2006 .

[41]  Timo Teräsvirta,et al.  An Introduction to Univariate GARCH Models , 2006 .