Dual-primal isogeometric tearing and interconnecting solvers for multipatch dG-IgA equations

Abstract In this paper we consider a new version of the dual-primal isogeometric tearing and interconnecting (IETI-DP) method for solving large-scale linear systems of algebraic equations arising from discontinuous Galerkin (dG) isogeometric analysis of diffusion problems on multipatch domains with non-matching meshes. The dG formulation is used to couple the local problems across patch interfaces. The purpose of this paper is to present this new method and provide numerical examples indicating a polylogarithmic condition number bound for the preconditioned system and showing an incredible robustness with respect to large jumps in the diffusion coefficient across the interfaces.

[1]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[2]  M. Dryja On Discontinuous Galerkin Methods for Elliptic Problems with Discontinuous Coefficients , 2003 .

[3]  Thomas J. R. Hughes,et al.  Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements , 2013, Numerische Mathematik.

[4]  Bert Jüttler,et al.  Matrix Generation in Isogeometric Analysis by Low Rank Tensor Approximation , 2014, Curves and Surfaces.

[5]  Maksymilian Dryja On discontinuos Galerkin methods for elliptic problems with discontinuous coefficints , 2003 .

[6]  Ulrich Langer,et al.  Dual-Primal Isogeometric Tearing and Interconnecting Solvers for large-scale systems of multipatch continuous Galerkin IgA equations , 2015, 1511.07183.

[7]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[8]  Christoph Hofer,et al.  Discontinuous Galerkin Isogeometric Analysis of elliptic problems on segmentations with non-matching interfaces , 2016, Comput. Math. Appl..

[9]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[10]  Hendrik Speleers,et al.  Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..

[11]  Olof B. Widlund,et al.  Isogeometric BDDC Preconditioners with Deluxe Scaling , 2014, SIAM J. Sci. Comput..

[12]  Ulrich Langer,et al.  Discontinuous Galerkin Isogeometric Analysis of Elliptic Diffusion Problems on Segmentations with Gaps , 2015, SIAM J. Sci. Comput..

[13]  Bert Jüttler,et al.  Geometry + Simulation Modules: Implementing Isogeometric Analysis , 2014 .

[14]  Ulrich Langer,et al.  Analysis of multipatch discontinuous Galerkin IgA approximations to elliptic boundary value problems , 2014, Comput. Vis. Sci..

[15]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[16]  Luca F. Pavarino,et al.  Overlapping Schwarz Methods for Isogeometric Analysis , 2012, SIAM J. Numer. Anal..

[17]  Luca F. Pavarino,et al.  BDDC PRECONDITIONERS FOR ISOGEOMETRIC ANALYSIS , 2013 .

[18]  M. Sarkis,et al.  3-D FETI-DP Preconditioners for Composite Finite Element-Discontinuous Galerkin Methods , 2014 .

[19]  Clemens Hofreither,et al.  A robust multigrid method for Isogeometric Analysis in two dimensions using boundary correction , 2015, 1512.07091.

[20]  U. Langer,et al.  Analysis of Discontinuous Galerkin IGA Approximations to Elliptic Boundary Value Problems , 2014 .

[21]  Juan Galvis,et al.  BDDC methods for discontinuous Galerkin discretization of elliptic problems , 2007, J. Complex..

[22]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[23]  Giancarlo Sangalli,et al.  Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.

[24]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[25]  Peter Betsch,et al.  Isogeometric analysis and domain decomposition methods , 2012 .

[26]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[27]  Clemens Pechstein,et al.  Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems , 2012, Lecture Notes in Computational Science and Engineering.

[28]  Angelos Mantzaflaris,et al.  Multipatch Discontinuous Galerkin Isogeometric Analysis , 2015 .

[29]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[30]  Juan Galvis,et al.  A FETI-DP Preconditioner for a Composite Finite Element and Discontinuous Galerkin Method , 2013, SIAM J. Numer. Anal..

[31]  Bert Jüttler,et al.  IETI – Isogeometric Tearing and Interconnecting , 2012, Computer methods in applied mechanics and engineering.

[32]  D. Arnold,et al.  Discontinuous Galerkin Methods for Elliptic Problems , 2000 .

[33]  Olaf Schenk,et al.  Fast Methods for Computing Selected Elements of the Green's Function in Massively Parallel Nanoelectronic Device Simulations , 2013, Euro-Par.

[34]  Luca F. Pavarino,et al.  Isogeometric Schwarz preconditioners for linear elasticity systems , 2013 .

[35]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[36]  Michel Bercovier,et al.  Overlapping non Matching Meshes Domain Decomposition Method in Isogeometric Analysis , 2015, 1502.03756.

[37]  Olof B. Widlund,et al.  Some Recent Tools and a BDDC Algorithm for 3D Problems in H(curl) , 2013, Domain Decomposition Methods in Science and Engineering XX.

[38]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .