Seed Dormancy and Delayed Flowering in Monocarpic Plants: Selective Interactions in a Stochastic Environment

We explore the effects of temporal variation in multiple demographic rates on the joint evolution of delayed reproduction and seed dormancy using integral projection models (IPMs). To do this, we extend the standard IPM to include a discrete state variable representing the number of seeds in the seed bank, density‐dependent recruitment, and temporal variation in demography. Parameter estimates for Carlina vulgaris and Carduus nutans are obtained from long‐term studies. Carlina is relatively long lived and has a short‐lived seed bank, whereas most Carduus plants flower in their first year and the seed bank is long lived. Using the evolutionarily stable strategy (ESS) approach, we predict the observed flowering and germination strategies. There is excellent agreement between the predictions and the field observations. The effects of temporal variation on the joint ESS are partitioned into components arising from nonlinear averaging (systematic changes in the mean resulting from the interaction between variability and nonlinearity) and nonequilibrium dynamics (fluctuations in fitness caused by temporal variation). This shows that temporal variation can have substantial effects on the observed flowering and germination strategies and that covariance between demographic processes is important. We extend the models to include spatial population structure and assess the robustness of the results from the nonspatial models.

[1]  D. Kelly,et al.  Wind dispersal of nodding thistle seeds and pappi , 1988 .

[2]  M. Rees,et al.  Evolution of size-dependent flowering in a variable environment: partitioning the effects of fluctuating selection , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[3]  M. G. Bulmer,et al.  Selection for Iteroparity in a Variable Environment , 1985, The American Naturalist.

[4]  B. Peco,et al.  Seed bank dynamics of Mediterranean pastures subjected to mechanical disturbance , 1990 .

[5]  T. J. Jong,et al.  Is it profitable for biennials to live longer than two years , 1983 .

[6]  S. Mazer Ecological, Taxonomic, and Life History Correlates of Seed Mass Among Indiana Dune Angiosperms , 1989 .

[7]  S. Ellner,et al.  ESS germination strategies in randomly varying environments. I. Logistic-type models. , 1985, Theoretical population biology.

[8]  Joel s. Brown,et al.  The Selective Interactions of Dispersal, Dormancy, and Seed Size as Adaptations for Reducing Risk in Variable Environments , 1988, The American Naturalist.

[9]  M. Rees Evolutionary ecology of seed dormancy and seed size , 1996 .

[10]  Jos B. T. M. Roerdink,et al.  The biennial life strategy in a random environment , 1987 .

[11]  B. Kendall,et al.  Correctly Estimating How Environmental Stochasticity Influences Fitness and Population Growth , 2005, The American Naturalist.

[12]  D. Cohen Optimizing reproduction in a randomly varying environment. , 1966, Journal of theoretical biology.

[13]  O. Eriksson,et al.  Seedling recruitment in semi-natural pastures: the effects of disturbance, seed size, phenology and seed bank , 1997 .

[14]  M. Rees Trade-offs among dispersal strategies in British plants , 1993, Nature.

[15]  S. Tuljapurkar,et al.  Escape in time : stay young or age gracefully? , 2000 .

[16]  P. Poschlod,et al.  Untersuchungen zur Dynamik von generativen Diasporenbanken von Samenpflanzen in Kalkmagerrasen. I. Jahreszeitliche Dynamik des Diasporenregens und der Diasporenbank auf zwei Kalkmagerrasenstandorten der Schwäbischen Alb , 1993 .

[17]  O. Eriksson,et al.  Population dynamics and the effect of disturbance in the monocarpic herb Carlina vulgaris (Asteraceae). , 2000 .

[18]  Brian M. Sindel,et al.  A review of the ecology and control of thistles in Australia. , 1991 .

[19]  Stephen P. Ellner,et al.  Evolution of size–dependent flowering in a variable environment: construction and analysis of a stochastic integral projection model , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[20]  D. Campbell GENETIC AND ENVIRONMENTAL VARIATION IN LIFE‐HISTORY TRAITS OF A MONOCARPIC PERENNIAL: A DECADE‐LONG FIELD EXPERIMENT , 1997, Evolution; international journal of organic evolution.

[21]  D. Franzen,et al.  Patch distribution and dispersal limitation of four plant species in Swedish semi-natural grasslands , 2003, Plant Ecology.

[22]  P. Klinkhamer,et al.  An eight-year study of population dynamics and life-history variation of the biennial Carlina vulgaris , 1996 .

[23]  D. Wardle,et al.  SURVIVAL OF NODDING THISTLE (CARDUUS NUTANS) SEED BURIED AT DIFFERENT DEPTHS IN FOUR SOILS , 1998 .

[24]  EVOLUTION IN THE REAL WORLD: STOCHASTIC VARIATION AND THE DETERMINANTS OF FITNESS IN CARLINA VULGARIS , 2002, Evolution; international journal of organic evolution.

[25]  A. Sheppard,et al.  The demography of Carduus nutans as a native and an alien weed. , 1996 .

[26]  Stephen P. Ellner,et al.  Evolution of complex flowering strategies: an age– and size–structured integral projection model , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[27]  N. Kachi 21 – Evolution of Size-dependent Reproduction in Biennial Plants: A Demographic Approach , 1990 .

[28]  S. Ellner,et al.  SIZE‐SPECIFIC SENSITIVITY: APPLYING A NEW STRUCTURED POPULATION MODEL , 2000 .

[29]  M. Rees,et al.  DEMOGRAPHIC AND EVOLUTIONARY IMPACTS OF NATIVE AND INVASIVE INSECT HERBIVORES ON CIRSIUM CANESCENS , 2005 .

[30]  M. Rees,et al.  Germination Biology and the Ecology of Annual Plants , 1992, The American Naturalist.

[31]  J. Gillespie Natural Selection for Variances in Offspring Numbers: A New Evolutionary Principle , 1977, The American Naturalist.

[32]  P. Klinkhamer,et al.  The evolution of generation time in metapopulations of monocarpic perennial plants: some theoretical considerations and the example of the rare thistle Carlina vulgaris , 2000, Evolutionary Ecology.

[33]  S. Ellner,et al.  Integral Projection Models for Species with Complex Demography , 2006, The American Naturalist.

[34]  M. Rees Delayed Germination of Seeds: A Look at the Effects of Adult Longevity, the Timing of Reproduction, and Population Age/Stage Structure , 1994, The American Naturalist.

[35]  Stephen P. Ellner,et al.  Stochastic stable population growth in integral projection models: theory and application , 2007, Journal of mathematical biology.

[36]  H. J. Verkaar,et al.  ON THE ECOLOGY OF SHORT‐LIVED FORBS IN CHALK GRASSLANDS: LIFE‐HISTORY CHARACTERISTICS , 1984 .

[37]  M. Rees,et al.  Evolution of flowering strategies in Oenothera glazioviana: an integral projection model approach , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[38]  Lindsay A. Turnbull,et al.  Are plant populations seed-limited? A review of seed sowing experiments. , 2000 .

[39]  M. Westoby,et al.  Hypotheses on Seed Size: Tests Using the Semiarid Flora of Western New South Wales, Australia , 1994, The American Naturalist.

[40]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[41]  P. Bednekoff Models of Adaptive Behaviour: An Approach based on State , 2000, Animal Behaviour.

[42]  D. Wardle,et al.  Influence of pasture grass and legume swards on seedling emergence and growth of Carduus nutans L. and Cirsium vulgare L. , 1992 .

[43]  M. G. Bulmer,et al.  Delayed germination of seeds: Cohen's model revisited , 1984 .

[44]  R. Fuller,et al.  THE COMPARATIVE ECOLOGY OF TWO SAND DUNE BIENNIALS: LACTUCA VIROSA L. AND CYNOGLOSSUM OFFICINALE L. , 1984 .

[45]  H. A. Roberts,et al.  Periodicity of seedling emergence and achene survival in some species of Carduus, Cirsium and Onopordum. , 1979 .

[46]  L. Real,et al.  Life History Evolution in Stochastic Environments: A Graphical Mean‐Variance Approach , 1992 .

[47]  R. Medd,et al.  The biology of Australian weeds. 21. Carduus nutans L. ssp. nutans. , 1990 .

[48]  R. Nisbet,et al.  How should we define 'fitness' for general ecological scenarios? , 1992, Trends in ecology & evolution.

[49]  L. C. Cole The Population Consequences of Life History Phenomena , 1954, The Quarterly Review of Biology.

[50]  J. Grimes The Biological Aspects of Rare Plant Conservation , 1982 .

[51]  Mark Rees,et al.  Evolutionary demography of monocarpic perennials. , 2003 .

[52]  河野 昭一 Biological approaches and evolutionary trends in plants , 1990 .

[53]  M. Slatkin,et al.  Evolution in a Variable Environment , 1990, The American Naturalist.

[54]  J. Bakker,et al.  The Soil Seed Banks of North West Europe: Methodology, Density and Longevity , 1996 .

[55]  L. Kok,et al.  Dispersal of Musk Thistle (Carduus nutans) Seeds , 1984, Weed Science.

[56]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[57]  M. J. D. Powell,et al.  A Method for Minimizing a Sum of Squares of Non-Linear Functions Without Calculating Derivatives , 1965, Comput. J..

[58]  Panetta,et al.  The Biology Of Australian Weeds , 1995 .

[59]  J. Hamrick,et al.  REALIZED GENE FLOW VIA POLLEN IN ARTIFICIAL POPULATIONS OF MUSK THISTLE, CARDUUS NUTANS L. , 1987, Evolution; international journal of organic evolution.

[60]  T. L. Woodburn,et al.  CONTEXT‐DEPENDENT BIOLOGICAL CONTROL OF AN INVASIVE THISTLE , 2005 .

[61]  Charles R. Fenster,et al.  Germination of Exhumed Weed Seed in Nebraska , 1981, Weed Science.

[62]  N. Kachi,et al.  Population dynamics of Oenothera glazioviana in a sand-dune system with special reference to the adaptive significance of size-dependent reproduction , 1985 .