Stokes and Navier-Stokes equations with Navier boundary conditions

Abstract We study the stationary Stokes and Navier-Stokes equations with nonhomogeneous Navier boundary conditions in a bounded domain Ω ⊂ R 3 of class C 1 , 1 . We prove the existence and uniqueness of weak and strong solutions in W 1 , p ( Ω ) and W 2 , p ( Ω ) for all 1 p ∞ , considering minimal regularity on the friction coefficient α. Moreover, we deduce uniform estimates for the solution with respect to α which enables us to analyze the behavior of the solution when α → ∞ .

[1]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[2]  Giovanni P. Galdi,et al.  An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems , 2011 .

[3]  C. Simader,et al.  Direct methods in the theory of elliptic equations , 2012 .

[4]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[5]  Carlos Conca,et al.  Stokes and Navier–Stokes equations with Navier boundary condition , 2018, Comptes Rendus Mathematique.

[6]  Willi Jäger,et al.  On the Roughness-Induced Effective Boundary Conditions for an Incompressible Viscous Flow , 2001 .

[7]  Doyoon Kim,et al.  Weighted $L_q$-estimates for stationary Stokes system with partially BMO coefficients , 2017, 1702.07045.

[8]  I. Babuska The Finite Element Method with Penalty , 1973 .

[9]  Jun Geng W1,p estimates for elliptic problems with Neumann boundary conditions in Lipschitz domains , 2012 .

[10]  Lamberto Cattabriga,et al.  Su un problema al contorno relativo al sistema di equazioni di Stokes , 1961 .

[11]  H. B. Veiga Remarks on the Navier–Stokes evolution equations under slip type boundary conditions with linear friction , 2007 .

[12]  E. Ouhabaz,et al.  The Incompressible Navier–Stokes System with Time-Dependent Robin-Type Boundary Conditions , 2015, Journal of Mathematical Fluid Mechanics.

[13]  H. B. Veiga,et al.  Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions , 2004 .

[14]  V. Girault,et al.  Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension , 1994 .

[15]  C. Amrouche,et al.  Stationary Stokes, Oseen and Navier–Stokes Equations with Singular Data , 2011 .

[16]  Carlos Conca,et al.  On the application of the homogenization theory to a class of problems arising in fluid mechanics , 1985 .

[17]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[18]  D. Serre Équations de Navier-Stokes stationnaires avec données peu régulières , 1983 .

[19]  M. Hillairet Lack of Collision Between Solid Bodies in a 2D Incompressible Viscous Flow , 2007 .

[20]  Nader Masmoudi,et al.  Uniform Regularity for the Navier–Stokes Equation with Navier Boundary Condition , 2010, 1008.1678.

[21]  L. Berselli An elementary approach to the 3D Navier-Stokes equations with Navier boundary conditions: Existence and uniqueness of various classes of solutions in the flat boundary case , 2010 .

[22]  Franck Sueur,et al.  Viscous boundary layers for the Navier–Stokes equations with the Navier slip conditions , 2011 .

[23]  Qiang Xu,et al.  Optimal Boundary Estimates for Stokes Systems in Homogenization Theory , 2017, SIAM J. Math. Anal..

[24]  Volker John,et al.  Slip With Friction and Penetration With Resistance Boundary Conditions for the Navier-Stokes Equatio , 2002 .

[25]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[26]  Bounds of Riesz Transforms on $L^p$ Spaces for Second Order Elliptic Operators , 2004, math/0410475.

[27]  V. Girault,et al.  Vector potentials in three-dimensional non-smooth domains , 1998 .

[28]  Chérif Amrouche,et al.  ON THE STOKES EQUATIONS WITH THE NAVIER-TYPE BOUNDARY CONDITIONS , 2011 .

[29]  Andro Mikelić,et al.  On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions , 1998 .

[30]  Gabriele Eisenhauer,et al.  Multiple Integrals In The Calculus Of Variations And Nonlinear Elliptic Systems , 2016 .

[31]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[32]  A. Zygmund On Singular Integrals , 1956 .

[33]  Dorin Bucur,et al.  On the asymptotic limit of the Navier–Stokes system on domains with rough boundaries , 2008 .

[34]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[35]  K. Pileckas,et al.  The existence theorem for steady Navier--Stokes equations in the axially symmetric case , 2011, 1110.6301.

[36]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[37]  James Serrin,et al.  Mathematical Principles of Classical Fluid Mechanics , 1959 .

[38]  R. Verfürth Finite element approximation on incompressible Navier-Stokes equations with slip boundary condition , 1987 .

[39]  D. Medková One problem of the Navier type for the Stokes system in planar domains , 2016 .

[40]  Nour El Houda Seloula,et al.  Lp-THEORY FOR VECTOR POTENTIALS AND SOBOLEV'S INEQUALITIES FOR VECTOR FIELDS: APPLICATION TO THE STOKES EQUATIONS WITH PRESSURE BOUNDARY CONDITIONS , 2013 .

[41]  Kumbakonam R. Rajagopal,et al.  Chapter 5 – Mathematical Issues Concerning the Navier–Stokes Equations and Some of Its Generalizations , 2005 .

[42]  Mariano Giaquinta,et al.  Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105 , 1984 .

[43]  James P. Kelliher Navier-Stokes Equations with Navier Boundary Conditions for a Bounded Domain in the Plane , 2006, SIAM J. Math. Anal..

[44]  William Layton,et al.  APPROXIMATION OF THE LARGER EDDIES IN FLUID MOTIONS II: A MODEL FOR SPACE-FILTERED FLOW , 2000 .

[45]  C. Conca,et al.  Uniform $$W^{1,p}$$ estimates for an elliptic operator with Robin boundary condition in a $$\mathcal {C}^1$$ domain , 2018, Calculus of Variations and Partial Differential Equations.