Natural vorticity boundary conditions on solid walls

Abstract We derive a new kind of boundary conditions for the vorticity equation with solid wall boundaries for fluid flow problems. The formulation uses a Dirichlet condition for the normal component of vorticity and Neumann type conditions for the tangential components. In a Galerkin (integral) formulation the tangential condition is natural, i.e., it is enforced by a right-hand side functional and does not impose a boundary constraint on trial and test spaces. The functional involves the pressure variable, and we discuss several velocity–vorticity formulations where the proposed condition is appropriate. Several numerical experiments are given that illustrate the validity of the new approach.

[1]  Charles G. Speziale,et al.  On the advantages of the vorticity-velocity formulations of the equations of fluid dynamics , 1986 .

[2]  Jiezhi Wu,et al.  Vorticity and Vortex Dynamics , 2006 .

[3]  Volker John,et al.  Reference values for drag and lift of a two‐dimensional time‐dependent flow around a cylinder , 2004 .

[4]  Yvonne Jaeger,et al.  Turbulence: An Introduction for Scientists and Engineers , 2015 .

[5]  David Wells,et al.  The deal.II Library, Version 8.4 , 2016, J. Num. Math..

[6]  William Layton,et al.  Introduction to the Numerical Analysis of Incompressible Viscous Flows , 2008 .

[7]  B. Morton,et al.  The generation and decay of vorticity , 1984 .

[8]  I. Tani Production of longitudinal vortices in the boundary layer along a concave wall , 1962 .

[9]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[10]  Peter Bradshaw,et al.  The effect of convex surface curvature on turbulent boundary layers , 1985, Journal of Fluid Mechanics.

[11]  P. Koumoutsakos,et al.  Boundary Conditions for Viscous Vortex Methods , 1994 .

[12]  Ernst Heinrich Hirschel,et al.  Flow Simulation with High-Performance Computers II , 1996 .

[13]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[14]  T. Richter,et al.  SOLUTIONS OF 3D NAVIER-STOKES BENCHMARK PROBLEMS WITH ADAPTIVE FINITE ELEMENTS , 2006 .

[15]  D. L. Young,et al.  An accurate numerical solution algorithm for 3D velocity–vorticity Navier–Stokes equations by the DQ method , 2005 .

[16]  Thomas J. R. Hughes,et al.  Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..

[17]  George Em Karniadakis,et al.  A Penalty Method for the Vorticity-Velocity Formulation , 1999 .

[18]  Maxim A. Olshanskii,et al.  On Error Analysis for the 3D Navier-Stokes Equations in Velocity-Vorticity-Helicity Form , 2011, SIAM J. Numer. Anal..

[19]  Charles M. Elliott,et al.  L2-estimates for the evolving surface finite element method , 2012, Math. Comput..

[20]  Maxim A. Olshanskii,et al.  On the accuracy of the rotation form in simulations of the Navier-Stokes equations , 2009, J. Comput. Phys..

[21]  Rickard Bensow,et al.  Residual based VMS subgrid modeling for vortex flows , 2010 .

[22]  H. Fasel,et al.  A Compact-Difference Scheme for the Navier—Stokes Equations in Vorticity—Velocity Formulation , 2000 .

[23]  Jiezhi Wu,et al.  Effective Vorticity-Velocity Formulations for Three-Dimensional Incompressible Viscous Flows , 1995 .

[24]  Maxim A. Olshanskii,et al.  Velocity-vorticity-helicity formulation and a solver for the Navier-Stokes equations , 2010, J. Comput. Phys..

[25]  Maxim A. Olshanskii,et al.  Grad–div stabilization and subgrid pressure models for the incompressible Navier–Stokes equations , 2009 .

[26]  G. Pedrizzetti,et al.  Vortex Dynamics , 2011 .

[27]  Arun K. Saha,et al.  Direct Numerical Simulation of Two-Dimensional Flow past a Normal Flat Plate , 2013 .

[28]  M. Olshanskii A fluid solver based on vorticity–helical density equations with application to a natural convection in a cubic cavity , 2012 .

[29]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[30]  G. Rapin,et al.  Efficient augmented Lagrangian‐type preconditioning for the Oseen problem using Grad‐Div stabilization , 2013 .

[31]  A. Reusken,et al.  Numerical Methods for Two-phase Incompressible Flows , 2011 .

[32]  Surya Pratap Vanka,et al.  Simulations of the unsteady separated flow past a normal flat plate , 1995 .

[33]  L. Quartapelle,et al.  Numerical solution of the incompressible Navier-Stokes equations , 1993, International series of numerical mathematics.

[34]  Ëøóó Ôöóóððññ Úò ¾ À ½ ´ªµ ¬òò´ùù Ôµ ¾ À ½ ¼ ´ªµ ¢ Ä ¾,et al.  Grad-Div Stablilization For Stokes Equations , .

[35]  A. J. Baker,et al.  A 3D incompressible Navier–Stokes velocity–vorticity weak form finite element algorithm , 2002 .

[36]  Maxim A. Olshanskii,et al.  Unconditional long-time stability of a velocity–vorticity method for the 2D Navier–Stokes equations , 2017, Numerische Mathematik.

[37]  Thomas B. Gatski,et al.  Review of incompressible fluid flow computations using the vorticity-velocity formulation , 1991 .

[38]  Wagdi G. Habashi,et al.  Finite Element Solution of the 3D Compressible Navier-Stokes Equations by a Velocity-Vorticity Method , 1993 .

[39]  Christopher R. Anderson,et al.  Vorticity boundary conditions and boundary vorticity generation for two-dimensional viscous incompressible flows , 1989 .

[40]  Y. Vassilevski,et al.  An octree-based solver for the incompressible Navier–Stokes equations with enhanced stability and low dissipation , 2013 .

[41]  Wen-Zhong Shen,et al.  Numerical method for unsteady 3D Navier-Stokes equations in velocity-vorticity form , 1997 .

[42]  Arun K. Saha,et al.  Far-wake characteristics of two-dimensional flow past a normal flat plate , 2007 .

[43]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[44]  Monique Dauge,et al.  Stationary Stokes and Navier-Stokes systems on two-or three-dimensional domains with corners , 1989 .

[45]  Andrew J. Majda,et al.  Vorticity and Incompressible Flow: Index , 2001 .

[46]  David Hannasch,et al.  On the accuracy of the viscous form in simulations of incompressible flow problems , 2012 .

[47]  Rolf Rannacher,et al.  ARTIFICIAL BOUNDARIES AND FLUX AND PRESSURE CONDITIONS FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS , 1996 .

[48]  Jian‐Guo Liu,et al.  Vorticity Boundary Condition and Related Issues for Finite Difference Schemes , 1996 .