Statistical design and analytical strategies for discovery of disease-specific protein patterns

[1]  Robert E. Schapire,et al.  The strength of weak learnability , 1990, Mach. Learn..

[2]  J. Potter,et al.  A data-analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection. , 2003, Biostatistics.

[3]  M. Schummer,et al.  Selecting Differentially Expressed Genes from Microarray Experiments , 2003, Biometrics.

[4]  M. Pepe The Statistical Evaluation of Medical Tests for Classification and Prediction , 2003 .

[5]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[6]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[7]  Yudong D. He,et al.  Gene expression profiling predicts clinical outcome of breast cancer , 2002, Nature.

[8]  Y. Yasui,et al.  An Automated Peak Identification/Calibration Procedure for High-Dimensional Protein Measures From Mass Spectrometers , 2003, Journal of biomedicine & biotechnology.

[9]  Yoav Freund,et al.  Boosting a weak learning algorithm by majority , 1990, COLT '90.

[10]  Frank E. Harrell,et al.  Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis , 2001 .

[11]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[12]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[13]  R. Tibshirani,et al.  Statistical Applications in Genetics and Molecular Biology Pre-validation and inference in microarrays , 2011 .

[14]  Trevor Hastie,et al.  Additive Logistic Regression : a Statistical , 1998 .

[15]  S. Hanash,et al.  Disease proteomics , 2003, Nature.

[16]  P. Schellhammer,et al.  Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients. , 2002, Clinical chemistry.