Three-party quantum summation without a trusted third party

In this paper, we propose a quantum summation protocol, in which the genuinely maximally entangled six-qubit states found by Borras et al., are employed. Because of the excellent properties of the ...

[1]  Dongyang Long,et al.  High-Capacity Quantum Summation with Single Photons in Both Polarization and Spatial-Mode Degrees of Freedom , 2014 .

[2]  Fei Gao,et al.  Multiparty quantum key agreement with single particles , 2012, Quantum Information Processing.

[3]  V. Buzek,et al.  Toward protocols for quantum-ensured privacy and secure voting , 2011, 1108.5090.

[4]  Su-Juan Qin,et al.  Dynamic quantum secret sharing , 2012 .

[5]  N. Gisin,et al.  Trojan-horse attacks on quantum-key-distribution systems (6 pages) , 2005, quant-ph/0507063.

[6]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[7]  Fuguo Deng,et al.  Improving the security of secure direct communication based on the secret transmitting order of particles , 2006, quant-ph/0612016.

[8]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[9]  Richard J. Hughes,et al.  Practical free-space quantum key distribution over 10 km in daylight and at night , 2002, quant-ph/0206092.

[10]  Dongyang Long,et al.  Quantum Secure Direct Communication with Two-Photon Four-Qubit Cluster States , 2012 .

[11]  G. He Quantum key distribution based on orthogonal states allows secure quantum bit commitment , 2011, 1101.4587.

[12]  Daowen Qiu,et al.  PERFECT TELEPORTATION BETWEEN ARBITRARY SPLIT OF SIX PARTITES BY A MAXIMALLY GENUINELY ENTANGLED SIX-QUBIT STATE , 2010 .

[13]  V. Karimipour,et al.  Entanglement swapping of generalized cat states and secret sharing , 2001, quant-ph/0112050.

[14]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[15]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[16]  V. Buzek,et al.  Towards quantum-based privacy and voting , 2005, quant-ph/0505041.

[17]  Ding Nie,et al.  Quantum anonymous voting for continuous variables , 2012 .

[18]  Zhi-Xi Wang,et al.  Deterministic secure direct communication using GHZ states and swapping quantum entanglement , 2004, quant-ph/0406082.

[19]  Z. Yuan,et al.  Quantum key distribution over 122 km of standard telecom fiber , 2004, quant-ph/0412171.

[20]  Stefan Heinrich Quantum Summation with an Application to Integration , 2002, J. Complex..

[21]  P. Sarvepalli Nonthreshold quantum secret-sharing schemes in the graph-state formalism , 2012, 1202.3433.

[22]  A. Plastino,et al.  Multiqubit systems: highly entangled states and entanglement distribution , 2007, 0803.3979.

[23]  Mario Berta,et al.  Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. , 2012 .

[24]  Daowen Qiu,et al.  Quantum secret sharing of multi-bits by an entangled six-qubit state , 2012 .

[25]  Qiaoyan Wen,et al.  Quantum secure direct communication with χ -type entangled states , 2008 .

[26]  Anthony Chefles,et al.  Quantum protocols for anonymous voting and surveying , 2005, quant-ph/0504161.

[27]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[28]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[29]  Weinfurter,et al.  Quantum cryptography with entangled photons , 1999, Physical review letters.

[30]  Erich Novak,et al.  On a problem in quantum summation , 2003, J. Complex..

[31]  Zhiwei Sun,et al.  Improvements on “multiparty quantum key agreement with single particles” , 2013, Quantum Inf. Process..

[32]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[33]  Qiaoyan Wen,et al.  An Efficient Protocol for the Secure Multi-party Quantum Summation , 2010 .

[34]  Guihua Zeng,et al.  Quantum key agreement protocol , 2004 .

[35]  H. F. Chau,et al.  Quantum-classical complexity-security tradeoff in secure multiparty computations , 1999, quant-ph/9901024.

[36]  Wei Jiang,et al.  High-Capacity Quantum Secure Direct Communication with Single Photons in Both Polarization and Spatial-Mode Degrees of Freedom , 2012 .

[37]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[38]  Tzonelih Hwang,et al.  Quantum key agreement protocol based on BB84 , 2010 .

[39]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[40]  Hoi-Kwong Lo,et al.  Insecurity of Quantum Secure Computations , 1996, ArXiv.

[41]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[42]  Zhiwei Sun,et al.  QUANTUM SECURE DIRECT COMMUNICATION WITH QUANTUM IDENTIFICATION , 2012 .