A Model-Free Voting Approach for Integrating Multiple Cues

Computer vision systems, such as “seeing” robots, aimed at functioning robustly in a natural environment rich on information benefit from relying on multiple cues. Then the problem of integrating these become central. Existing approaches to cue integration have typically been based on physical and mathematical models for each cue and used estimation and optimization methods to fuse the parameterizations of these models.

[1]  K. Sugihara Machine interpretation of line drawings , 1986, MIT Press series in artificial intelligence.

[2]  Tony Lindeberg,et al.  Direct estimation of affine image deformations using visual front-end operations with automatic scale selection , 1995, Proceedings of IEEE International Conference on Computer Vision.

[3]  Richard P. Wildes,et al.  Direct Recovery of Three-Dimensional Scene Geometry From Binocular Stereo Disparity , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Jitendra Malik,et al.  Determining Three-Dimensional Shape from Orientation and Spatial Frequency Disparities , 1991, ECCV.

[5]  C. Tyler Stereoscopic Vision: Cortical Limitations and a Disparity Scaling Effect , 1973, Science.

[6]  Ching Y. Suen,et al.  Application of majority voting to pattern recognition: an analysis of its behavior and performance , 1997, IEEE Trans. Syst. Man Cybern. Part A.

[7]  B. Julesz,et al.  Modifications of the Classical Notion of Panum's Fusional Area , 1980, Perception.

[8]  James J. Clark,et al.  Data Fusion for Sensory Information Processing Systems , 1990 .

[9]  Isaac Weiss,et al.  Projective invariants of shapes , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Tony Lindeberg,et al.  Shape from texture from a multi-scale perspective , 1993, 1993 (4th) International Conference on Computer Vision.

[11]  B. Parhami Voting algorithms , 1994 .

[12]  Jan-Olof Eklundh,et al.  Shape Representation by Multiscale Contour Approximation , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  J P Frisby,et al.  PMF: A Stereo Correspondence Algorithm Using a Disparity Gradient Limit , 1985, Perception.

[14]  Jonas Gårding Shape from Texture and Contour by Weak Isotropy , 1993, Artif. Intell..

[15]  Takeshi Shakunaga,et al.  Shape From Angles Under Perspective Projection , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[16]  Andrew Zisserman,et al.  Geometric invariance in computer vision , 1992 .

[17]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Jan-Olof Eklundh,et al.  Seeing the obvious [robot vision] , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[19]  H. Bülthoff,et al.  INTERACTION OF DIFFERENT MODULES IN DEPTH PERCEPTION. , 1987, ICCV 1987.

[20]  Tony Lindeberg,et al.  Direct Estimation of Local Surface Shape in a Fixating Binocular Vision System , 1994, ECCV.

[21]  Mengxiang Li Hierarchical multi-point matching with simultaneous detection and location of breaklines , 1990 .

[22]  Rajeev Sharma,et al.  Early detection of independent motion from active control of normal image flow patterns , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[23]  Isabelle Bloch Information combination operators for data fusion: a comparative review with classification , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[24]  Robin R. Murphy,et al.  Biological and cognitive foundations of intelligent sensor fusion , 1996, IEEE Trans. Syst. Man Cybern. Part A.