Extended Algorithms for Approximating Variable Order Fractional Derivatives with Applications

This paper proposes accurate and robust algorithms for approximating variable order fractional derivatives of arbitrary order. The proposed schemes are based on finite difference approximations. We compare the performance of algorithms by introducing a new formulation of experimental convergence order. Two initial value problems are considered and solved by means of the proposed methods. Numerical results are provided justifying the usefulness of the proposed methods.

[1]  Ercília Sousa,et al.  How to Approximate the fractional derivative of Order 1 < α ≤ 2 , 2012, Int. J. Bifurc. Chaos.

[2]  F. Mainardi,et al.  Fractional Calculus: Quo Vadimus? (Where are we Going?) , 2015 .

[3]  Behrouz Parsa Moghaddam,et al.  A numerical method based on finite difference for solving fractional delay differential equations , 2013 .

[4]  Dominik Sierociuk,et al.  On the Recursive Fractional Variable-Order Derivative: Equivalent Switching Strategy, Duality, and Analog Modeling , 2015, Circuits Syst. Signal Process..

[5]  F. Mainardi,et al.  Recent history of fractional calculus , 2011 .

[6]  Ali H. Bhrawy,et al.  A review of operational matrices and spectral techniques for fractional calculus , 2015 .

[7]  H. Davis Introduction to Nonlinear Differential and Integral Equations , 1964 .

[8]  Delfim F. M. Torres,et al.  An Expansion Formula with Higher-Order Derivatives for Fractional Operators of Variable Order , 2013, TheScientificWorldJournal.

[9]  C. Coimbra,et al.  Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation , 2009 .

[10]  Sergei D. Odintsov,et al.  Effective Action in Quantum Gravity , 1992 .

[11]  José António Tenreiro Machado,et al.  Numerical calculation of the left and right fractional derivatives , 2015, J. Comput. Phys..

[12]  Carlos F.M. Coimbra,et al.  On the control and stability of variable-order mechanical systems , 2016 .

[13]  Dominik Sierociuk,et al.  Derivation, interpretation, and analog modelling of fractional variable order derivative definition , 2013, 1304.5072.

[14]  Marek Nowakowski,et al.  Newton's laws of motion in the form of a Riccati equation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Fawang Liu,et al.  Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation , 2010, SIAM J. Sci. Comput..

[16]  Hu Sheng,et al.  On mean square displacement behaviors of anomalous diffusions with variable and random orders , 2010 .

[17]  Xuan Zhao,et al.  Second-order approximations for variable order fractional derivatives: Algorithms and applications , 2015, J. Comput. Phys..

[18]  Fawang Liu,et al.  Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation , 2009, Appl. Math. Comput..

[19]  Sören Bartels,et al.  Finite Difference Method , 2022, Numerical Methods for Atmospheric and Oceanic Sciences.

[20]  Duarte Valério,et al.  Variable-order fractional derivatives and their numerical approximations , 2011, Signal Process..

[21]  José António Tenreiro Machado,et al.  SM-Algorithms for Approximating the Variable-Order Fractional Derivative of High Order , 2017, Fundam. Informaticae.

[22]  J. A. Tenreiro Machado,et al.  An Efficient Numerical Scheme for Solving Multi‐Dimensional Fractional Optimal Control Problems With a Quadratic Performance Index , 2015 .

[23]  José António Tenreiro Machado,et al.  On development of fractional calculus during the last fifty years , 2013, Scientometrics.

[24]  Carlos F.M. Coimbra,et al.  On the variable order dynamics of the nonlinear wake caused by a sedimenting particle , 2011 .

[25]  Behrouz Parsa Moghaddam,et al.  A novel matrix approach to fractional finite difference for solving models based on nonlinear fractional delay differential equations , 2014 .

[26]  J. A. Tenreiro Machado,et al.  An Extended Predictor–Corrector Algorithm for Variable-Order Fractional Delay Differential Equations , 2016 .

[27]  H. C. Rosu,et al.  One-Parameter Darboux-Transformed Quantum Actions in Thermodynamics , 2001, quant-ph/0107043.

[28]  José António Tenreiro Machado,et al.  A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations , 2017, Comput. Math. Appl..

[29]  Carlos F.M. Coimbra,et al.  Mechanics with variable‐order differential operators , 2003 .

[30]  Junqiang Xi,et al.  Special Issue on “Recent Developments on Modeling and Control of Hybrid Electric Vehicles” , 2016 .

[31]  Kimball A. Milton,et al.  Bulk versus brane running couplings , 2002 .

[32]  Behrouz Parsa Moghaddam,et al.  An efficient cubic spline approximation for variable-order fractional differential equations with time delay , 2017 .

[33]  Ali H. Bhrawy,et al.  Numerical algorithm for the variable-order Caputo fractional functional differential equation , 2016 .

[34]  Teodor M. Atanackovic,et al.  An expansion formula for fractional derivatives of variable order , 2013 .

[35]  Carlos F.M. Coimbra,et al.  On the Selection and Meaning of Variable Order Operators for Dynamic Modeling , 2010 .

[36]  Carl F. Lorenzo,et al.  Variable Order and Distributed Order Fractional Operators , 2002 .

[37]  Delfim F. M. Torres,et al.  Caputo derivatives of fractional variable order: Numerical approximations , 2015, Commun. Nonlinear Sci. Numer. Simul..

[38]  Carlos F.M. Coimbra,et al.  Variable Order Modeling of Diffusive-convective Effects on the Oscillatory Flow Past a Sphere , 2008 .

[39]  B. Ross,et al.  Integration and differentiation to a variable fractional order , 1993 .

[40]  Mehmet Merdan,et al.  On the Solutions Fractional Riccati Differential Equation with Modified Riemann-Liouville Derivative , 2012 .

[41]  Jesper Ferkinghoff-Borg,et al.  Diffusion, fragmentation, and coagulation processes: analytical and numerical results. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Behrouz Parsa Moghaddam,et al.  A numerical method for solving Linear Non-homogenous Fractional Ordinary Differential Equation , 2012 .

[43]  Avinash Khare,et al.  Supersymmetry and quantum mechanics , 1995 .

[44]  Mohammad Kamrul Hasan,et al.  An Implicit Method for Numerical Solution of Second Order Singular Initial Value Problems , 2014 .

[45]  Alexandre Almeida,et al.  Fractional and Hypersingular Operators in Variable Exponent Spaces on Metric Measure Spaces , 2009 .

[46]  Bertram Ross,et al.  Fractional integration operator of variable order in the holder spaces Hλ(x) , 1995 .

[47]  Y. Chen,et al.  Variable-order fractional differential operators in anomalous diffusion modeling , 2009 .

[48]  Carlos F.M. Coimbra,et al.  The variable viscoelasticity oscillator , 2005 .

[49]  Fawang Liu,et al.  Numerical Methods for the Variable-Order Fractional Advection-Diffusion Equation with a Nonlinear Source Term , 2009, SIAM J. Numer. Anal..