Scout: a hardware-accelerated system for quantitatively driven visualization and analysis

Quantitative techniques for visualization are critical to the successful analysis of both acquired and simulated scientific data. Many visualization techniques rely on indirect mappings, such as transfer functions, to produce the final imagery. In many situations, it is preferable and more powerful to express these mappings as mathematical expressions, or queries, that can then be directly applied to the data. We present a hardware-accelerated system that provides such capabilities and exploits current graphics hardware for portions of the computational tasks that would otherwise be executed on the CPU. In our approach, the direct programming of the graphics processor using a concise data parallel language, gives scientists the capability to efficiently explore and visualize data sets.

[1]  Jane Wilhelms,et al.  DIRECT VOLUME RENDERING VIA 3D TEXTURES , 1994 .

[2]  Pat Hanrahan,et al.  Brook for GPUs: stream computing on graphics hardware , 2004, ACM Trans. Graph..

[3]  Anthony Mezzacappa,et al.  TeraScale Supernova Initiative , 2002 .

[4]  Chris Henze,et al.  Large field visualization with demand-driven calculation , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[5]  Joe Michael Kniss,et al.  Multidimensional Transfer Functions for Interactive Volume Rendering , 2002, IEEE Trans. Vis. Comput. Graph..

[6]  R. C. Malone,et al.  A Reformulation and Implementation of the Bryan-Cox-Semtner Ocean Model on the Connection Machine , 1993 .

[7]  Eric Lengyel Open GL Extension Guide , 2003 .

[8]  T. J. Jankun-Kelly,et al.  Visualization Exploration and Encapsulation via a Spreadsheet-Like Interface , 2001, IEEE Trans. Vis. Comput. Graph..

[9]  William R. Mark,et al.  Cg: a system for programming graphics hardware in a C-like language , 2003, ACM Trans. Graph..

[10]  Lloyd Treinish,et al.  An extended data-flow architecture for data analysis and visualization , 1995, COMG.

[11]  Brian Cabral,et al.  Accelerated volume rendering and tomographic reconstruction using texture mapping hardware , 1994, VVS '94.

[12]  Eitan Grinspun,et al.  Sparse matrix solvers on the GPU: conjugate gradients and multigrid , 2003, SIGGRAPH Courses.

[13]  John D. Owens,et al.  Mio: fast multipass partitioning via priority-based instruction scheduling , 2004, Graphics Hardware.

[14]  Joe Michael Kniss,et al.  Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets , 2001, Proceedings Visualization, 2001. VIS '01..

[15]  Ross T. Whitaker,et al.  Interactive deformation and visualization of level set surfaces using graphics hardware , 2003, IEEE Visualization, 2003. VIS 2003..

[16]  Greg Humphreys,et al.  A multigrid solver for boundary value problems using programmable graphics hardware , 2003, HWWS '03.

[17]  Steven G. Parker,et al.  Large-scale Computational Science Applications using the SCIRun Problem Solving Environment , 2000 .

[18]  Rüdiger Westermann,et al.  Linear algebra operators for GPU implementation of numerical algorithms , 2003, SIGGRAPH Courses.

[19]  Eric Lengyel The Opengl Extensions Guide , 2003 .