Smooth Subdivision Surfaces over Multiple Meshes
暂无分享,去创建一个
Stefan Maierhofer | Robert F. Tobler | Przemyslaw Musialski | R. Tobler | Przemyslaw Musialski | S. Maierhofer
[1] Jos Stam,et al. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.
[2] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[3] Jörg Peters,et al. Patching Catmull-Clark meshes , 2000, SIGGRAPH.
[4] Charles T. Loop. Triangle Mesh Subdivision with Bounded Curvature and the Convex Hull Property , 2001 .
[5] Hugues Hoppe,et al. Displaced subdivision surfaces , 2000, SIGGRAPH.
[6] Malcolm A. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1998 .
[7] Ulrich Reif,et al. A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..
[8] Malcolm A. Sabin,et al. Non-uniform recursive subdivision surfaces , 1998, SIGGRAPH.
[9] Charles T. Loop,et al. Quad/Triangle Subdivision , 2003, Comput. Graph. Forum.
[10] Frank Losasso,et al. Geometry clipmaps: terrain rendering using nested regular grids , 2004, SIGGRAPH 2004.
[11] Peter Schröder,et al. Normal meshes , 2000, SIGGRAPH.
[12] Tony DeRose,et al. Subdivision surfaces in character animation , 1998, SIGGRAPH.
[13] Stefan Maierhofer,et al. A Mesh Data Structure for Rendering and Subdivision , 2006 .
[14] Peter Schröder,et al. Multiresolution signal processing for meshes , 1999, SIGGRAPH.
[15] Henning Biermann,et al. Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.
[16] Stefan Maierhofer,et al. A multiresolution mesh generation approach for procedural definition of complex geometry , 2002, Proceedings SMI. Shape Modeling International 2002.