Smooth Subdivision Surfaces over Multiple Meshes

Standard subdivision rules, such as Catmull-Clark and Loop allow the creation of smooth surfaces with C2 continuity over almost the whole domain except at extraordinary vertices. Normally, the subdivision schemes are limited to one mesh and need special rules for handling the boundaries of the domain. This issue leads to complications in straightforward approaches to compose objects out of multiple joined meshes. We propose a new method for stitching control meshes at common faces. The new approach uses the stitching information to smoothly subdivide the meshes across the stitching edges, while maintaining the meshes as separate units in memory. This makes it possible to compose large, complex geometries using simple components, without the necessity to subdivide the complete mesh down to the same detail level.

[1]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[2]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[3]  Jörg Peters,et al.  Patching Catmull-Clark meshes , 2000, SIGGRAPH.

[4]  Charles T. Loop Triangle Mesh Subdivision with Bounded Curvature and the Convex Hull Property , 2001 .

[5]  Hugues Hoppe,et al.  Displaced subdivision surfaces , 2000, SIGGRAPH.

[6]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[7]  Ulrich Reif,et al.  A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..

[8]  Malcolm A. Sabin,et al.  Non-uniform recursive subdivision surfaces , 1998, SIGGRAPH.

[9]  Charles T. Loop,et al.  Quad/Triangle Subdivision , 2003, Comput. Graph. Forum.

[10]  Frank Losasso,et al.  Geometry clipmaps: terrain rendering using nested regular grids , 2004, SIGGRAPH 2004.

[11]  Peter Schröder,et al.  Normal meshes , 2000, SIGGRAPH.

[12]  Tony DeRose,et al.  Subdivision surfaces in character animation , 1998, SIGGRAPH.

[13]  Stefan Maierhofer,et al.  A Mesh Data Structure for Rendering and Subdivision , 2006 .

[14]  Peter Schröder,et al.  Multiresolution signal processing for meshes , 1999, SIGGRAPH.

[15]  Henning Biermann,et al.  Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.

[16]  Stefan Maierhofer,et al.  A multiresolution mesh generation approach for procedural definition of complex geometry , 2002, Proceedings SMI. Shape Modeling International 2002.