INFLUENCE OF DESIGN PARAMETERS ON THE SINGULARITIES AND WORKSPACE OF A 3-RPS PARALLEL ROBOT

This paper presents the variations in the workspace, singularities and joint space with respect to the design parameter k of the 3-RPS parallel manipulator. Also the influence on the parasitic motions due to the design parameters is studied, which plays an important role in the selection of the manipulator for a desired task. The cylindrical algebraic decomposition method and Grobner based computations are used to model the workspace and joint space with the parallel singularities in 2R1T and 3T projection spaces, where the orientation of the mobile platform is represented by using quaternions. These computations are useful to select the optimum value for the design parameter such that the parasitic motions can be limited to specific values. Depending on the design parameter k, three different configurations of the 3-RPS parallel robot are analyzed.

[1]  C. Gosselin Determination of the Workspace of 6-DOF Parallel Manipulators , 1990 .

[2]  Damien Chablat,et al.  An Exhaustive Study of the Workspaces Tolopogies of all 3R Orthogonal Manipulators with Geometric Simplifications , 2006, ArXiv.

[3]  Jeha Ryu,et al.  Orientation workspace analysis of 6-DOF parallel manipulators , 1999 .

[4]  Marco Ceccarelli,et al.  A Fairly General Algorithm to Evaluate Workspace Characteristics of Serial and Parallel Manipulators , 2008 .

[5]  Fabrice Rouillier,et al.  Non-singular assembly mode changing trajectories in the workspace for the 3-RPS parallel robot , 2014, ArXiv.

[6]  Fabrice Rouillier,et al.  Workspace and Singularity analysis of a Delta like family robot , 2015, ArXiv.

[7]  Ranjan K. Jha Contribution à l'analyse de performance des robots parallèles. (Contributions to the Performance Analysis of Parallel robots) , 2016 .

[8]  Damien Chablat,et al.  Non-Singular Assembly Mode Changing Trajectories of a 6-DOF Parallel Robot , 2012 .

[9]  Damien Chablat,et al.  Non-Singular Assembly-mode Changing Motions for 3-RPR Parallel Manipulators , 2008, ArXiv.

[10]  Alain Liégeois,et al.  A study of multiple manipulator inverse kinematic solutions with applications to trajectory planning and workspace determination , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[11]  J. Gallardo,et al.  Acceleration Analysis of 3-RPS Parallel Manipulators by Means of Screw Theory , 2008 .

[12]  Damien Chablat,et al.  Definition sets for the direct kinematics of parallel manipulators , 1997, 1997 8th International Conference on Advanced Robotics. Proceedings. ICAR'97.

[13]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[14]  Damien Chablat,et al.  Uniqueness domains and non singular assembly mode changing trajectories , 2011, 2011 IEEE International Conference on Robotics and Automation.

[15]  W. Böge,et al.  Quantifier Elimination for Real Closed Fields , 1985, AAECC.

[16]  Fabrice Rouillier,et al.  Workspace and Joint Space Analysis of the 3-RPS Parallel Robot , 2014 .

[17]  Charles Pinto,et al.  Transitions between Multiple Solutions of the Direct Kinematic Problem , 2008 .

[18]  M. Husty,et al.  The 3-RPS parallel manipulator from an algebraic viewpoint , 2014 .

[19]  Damien Chablat,et al.  An Interval Analysis Based Study for the Design and the Comparison of 3-DOF Parallel Kinematic Machines , 2007, ArXiv.

[20]  Tao Sun,et al.  Passive and active gravity compensation of horizontally-mounted 3-RPS parallel kinematic machine , 2016 .

[21]  M. Husty,et al.  Identification of the Workspace Boundary Of a General 3-R Manipulator , 2006 .

[22]  K. Ramji,et al.  DESIGN FOR OPTIMAL PERFORMANCE OF 3-RPS PARALLEL MANIPULATOR USING EVOLUTIONARY ALGORITHMS , 2013 .

[23]  R. W. Daniel,et al.  An Explanation of Never-Special Assembly Changing Motions for 3–3 Parallel Manipulators , 1999, Int. J. Robotics Res..

[24]  Fabrice Rouillier,et al.  On the determination of cusp points of 3-R\underline{P}R parallel manipulators , 2010, ArXiv.