Genome-wide meta-analyses identify multiple loci associated with smoking behavior
暂无分享,去创建一个
Ming D. Li | Toshiko Tanaka | S. Bandinelli | A. Hofman | A. Uitterlinden | D. Absher | T. Assimes | D. Levy | L. Ferrucci | P. Sullivan | D. Altshuler | E. Boerwinkle | V. Salomaa | Jianxin Shi | L. Groop | J. Ioannidis | M. Boehnke | P. Ridker | D. Chasman | T. Frayling | J. Perry | E. Benjamin | R. Vasan | J. Knowles | S. Chanock | D. Hunter | L. Bernardinelli | D. Lin | Shih-Jen Hwang | C. Duijn | J. Kaprio | J. Guralnik | B. Psaty | P. Kraft | C. Furberg | B. Penninx | G. Willemsen | S. Hankinson | K. Mohlke | H. Stringham | A. Jackson | J. Tuomilehto | B. Voight | S. Kathiresan | P. Almgren | O. Melander | C. Healy | K. Taylor | Yunjung Kim | D. Ardissino | M. Lathrop | D. Posthuma | D. Boomsma | D. Levinson | P. Brennan | J. Lissowska | C. Ladenvall | J. Smit | X. Castellsagué | C. Lerman | C. O’Donnell | P. Rudnai | R. Elosua | J. Bis | L. Forétova | H. Tiemeier | N. Franceschini | Y. Milaneschi | S. Schwartz | C. Iribarren | T. Quertermous | A. Znaor | E. Fabianova | T. Haritunians | S. Walter | G. Paré | S. Fortmann | B. McKnight | J. Duan | A. Sanders | P. Gejman | E. D. Geus | J. Vink | D. Zaridze | V. Janout | V. Bencko | Neonilia szeszenia-Dabrowska | D. Mates | I. Holcatova | G. Lucas | L. Thornton | P. Lagiou | N. Vogelzangs | L. Richiardi | P. Mannucci | B. Everett | H. Maes | H. Furberg | S. Benhamou | J. Audrain-McGovern | J. Dackor | F. Mauri | P. Merlini | E. Thacker | S. Preis | E. Lips | J. McKay | A. Agudo | L. Barzan | C. Canova | D. Conway | K. Kjaerheim | R. Lowry | T. Macfarlane | F. Gu | J. Rose | Brendan M. Everett | R. Elosúa | N. szeszenia-Dabrowska | L. Foretova | J. Mckay | A. Uitterlinden | E. Fabiánová | Fangyi Gu | Toshiko Tanaka | A. Hofman | J. Perry | D. Boomsma | B. Psaty | D. Hunter | A. Jackson | K. Taylor | P. Brennan | D. Levy | Jennifer Dackor | Raymond J. Lowry | K. Taylor
[1] Tariq Ahmad,et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity , 2010, Nature Genetics.
[2] C. Gieger,et al. Sequence variants at CHRNB3–CHRNA6 and CYP2A6 affect smoking behavior , 2010, Nature Genetics.
[3] John P A Ioannidis,et al. Discovery properties of genome-wide association signals from cumulatively combined data sets. , 2009, American journal of epidemiology.
[4] Peter Kraft,et al. Replication in genome-wide association studies. , 2009, Statistical science : a review journal of the Institute of Mathematical Statistics.
[5] L. Peltonen,et al. Association of serum cotinine level with a cluster of three nicotinic acetylcholine receptor genes (CHRNA3/CHRNA5/CHRNB4) on chromosome 15. , 2009, Human molecular genetics.
[6] F. Collins,et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits , 2009, Proceedings of the National Academy of Sciences.
[7] John P. Rice,et al. Multiple distinct risk loci for nicotine dependence identified by dense coverage of the complete family of nicotinic receptor subunit (CHRN) genes , 2009, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.
[8] D. Zeng,et al. Proper analysis of secondary phenotype data in case‐control association studies , 2009, Genetic epidemiology.
[9] C. Lerman,et al. Nicotine Dependence Pharmacogenetics: Role of Genetic Variation in Nicotine-Metabolizing Enzymes , 2009, Journal of neurogenetics.
[10] Yong-Kyu Kim. Handbook of Behavior Genetics , 2009 .
[11] J. Kaprio,et al. Genetics of Smoking Behavior , 2009 .
[12] R. Tyndale,et al. Molecular genetics of nicotine metabolism. , 2009, Handbook of experimental pharmacology.
[13] Ellen Kampman,et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity , 2009, Nature Genetics.
[14] G. Abecasis,et al. Genotype imputation. , 2009, Annual review of genomics and human genetics.
[15] A. Malarcher,et al. Cigarette Smoking Among Adults in the United States , 2008 .
[16] Manuel A. R. Ferreira,et al. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. , 2008, Human molecular genetics.
[17] M. Daly,et al. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants , 2008, Genetic epidemiology.
[18] Daniel F. Gudbjartsson,et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease , 2008, Nature.
[19] F. Dudbridge,et al. Estimation of significance thresholds for genomewide association scans , 2008, Genetic epidemiology.
[20] Ming D. Li. Identifying susceptibility loci for nicotine dependence: 2008 update based on recent genome-wide linkage analyses , 2008, Human Genetics.
[21] J. Gerberding,et al. Cigarette smoking among adults--United States, 2007. , 2008, MMWR. Morbidity and mortality weekly report.
[22] Zhaohui S. Qin,et al. A second generation human haplotype map of over 3.1 million SNPs , 2007, Nature.
[23] Evangelos Evangelou,et al. Heterogeneity in Meta-Analyses of Genome-Wide Association Investigations , 2007, PloS one.
[24] J. Long,et al. Genetic research on complex behaviors: an examination of attempts to identify genes for smoking. , 2007, Nicotine & tobacco research : official journal of the Society for Research on Nicotine and Tobacco.
[25] P. Donnelly,et al. A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.
[26] M. Stephens,et al. Imputation-Based Analysis of Association Studies: Candidate Regions and Quantitative Traits , 2007, PLoS genetics.
[27] J. Gerberding,et al. Cigarette smoking among adults --- United States, 2006 , 2007 .
[28] P. Sullivan,et al. Cigarettes and oral snuff use in Sweden: Prevalence and transitions. , 2006, Addiction.
[29] D. Reich,et al. Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.
[30] M. Daly,et al. Evaluating and improving power in whole-genome association studies using fixed marker sets , 2006, Nature Genetics.
[31] F. Joseph McClernon,et al. Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization , 2006, Psychopharmacology.
[32] J. Kaprio,et al. Genetic and Environmental Factors in Complex Diseases: The Older Finnish Twin Cohort , 2002, Twin Research.
[33] Jaakko Kaprio,et al. Genetic and environmental factors in health-related behaviors: studies on Finnish twins and twin families. , 2002, Twin research : the official journal of the International Society for Twin Studies.
[34] P. Lichtenstein,et al. The Swedish Twin Registry: a unique resource for clinical, epidemiological and genetic studies , 2002, Journal of internal medicine.
[35] Li I. Zhang,et al. Electrical activity and development of neural circuits , 2001, Nature Neuroscience.
[36] R C Elston,et al. A quantitative-trait analysis of human plasma-dopamine beta-hydroxylase activity: evidence for a major functional polymorphism at the DBH locus. , 2001, American journal of human genetics.
[37] P. Donnelly,et al. Inference of population structure using multilocus genotype data. , 2000, Genetics.
[38] K. Roeder,et al. Genomic Control for Association Studies , 1999, Biometrics.
[39] Y. Funae,et al. Role of human cytochrome P4502A6 in C-oxidation of nicotine. , 1996, Drug metabolism and disposition: the biological fate of chemicals.
[40] M. Fiore,et al. The Effectiveness of the Nicotine Patch for Smoking Cessation , 1994 .
[41] M. Fiore,et al. The effectiveness of the nicotine patch for smoking cessation. A meta-analysis. , 1994, JAMA.