Genome-wide meta-analyses identify multiple loci associated with smoking behavior

Ming D. Li | Toshiko Tanaka | S. Bandinelli | A. Hofman | A. Uitterlinden | D. Absher | T. Assimes | D. Levy | L. Ferrucci | P. Sullivan | D. Altshuler | E. Boerwinkle | V. Salomaa | Jianxin Shi | L. Groop | J. Ioannidis | M. Boehnke | P. Ridker | D. Chasman | T. Frayling | J. Perry | E. Benjamin | R. Vasan | J. Knowles | S. Chanock | D. Hunter | L. Bernardinelli | D. Lin | Shih-Jen Hwang | C. Duijn | J. Kaprio | J. Guralnik | B. Psaty | P. Kraft | C. Furberg | B. Penninx | G. Willemsen | S. Hankinson | K. Mohlke | H. Stringham | A. Jackson | J. Tuomilehto | B. Voight | S. Kathiresan | P. Almgren | O. Melander | C. Healy | K. Taylor | Yunjung Kim | D. Ardissino | M. Lathrop | D. Posthuma | D. Boomsma | D. Levinson | P. Brennan | J. Lissowska | C. Ladenvall | J. Smit | X. Castellsagué | C. Lerman | C. O’Donnell | P. Rudnai | R. Elosua | J. Bis | L. Forétova | H. Tiemeier | N. Franceschini | Y. Milaneschi | S. Schwartz | C. Iribarren | T. Quertermous | A. Znaor | E. Fabianova | T. Haritunians | S. Walter | G. Paré | S. Fortmann | B. McKnight | J. Duan | A. Sanders | P. Gejman | E. D. Geus | J. Vink | D. Zaridze | V. Janout | V. Bencko | Neonilia szeszenia-Dabrowska | D. Mates | I. Holcatova | G. Lucas | L. Thornton | P. Lagiou | N. Vogelzangs | L. Richiardi | P. Mannucci | B. Everett | H. Maes | H. Furberg | S. Benhamou | J. Audrain-McGovern | J. Dackor | F. Mauri | P. Merlini | E. Thacker | S. Preis | E. Lips | J. McKay | A. Agudo | L. Barzan | C. Canova | D. Conway | K. Kjaerheim | R. Lowry | T. Macfarlane | F. Gu | J. Rose | Brendan M. Everett | R. Elosúa | N. szeszenia-Dabrowska | L. Foretova | J. Mckay | A. Uitterlinden | E. Fabiánová | Fangyi Gu | Toshiko Tanaka | A. Hofman | J. Perry | D. Boomsma | B. Psaty | D. Hunter | A. Jackson | K. Taylor | P. Brennan | D. Levy | Jennifer Dackor | Raymond J. Lowry | K. Taylor

[1]  Tariq Ahmad,et al.  Meta-analysis and imputation refines the association of 15q25 with smoking quantity , 2010, Nature Genetics.

[2]  C. Gieger,et al.  Sequence variants at CHRNB3–CHRNA6 and CYP2A6 affect smoking behavior , 2010, Nature Genetics.

[3]  John P A Ioannidis,et al.  Discovery properties of genome-wide association signals from cumulatively combined data sets. , 2009, American journal of epidemiology.

[4]  Peter Kraft,et al.  Replication in genome-wide association studies. , 2009, Statistical science : a review journal of the Institute of Mathematical Statistics.

[5]  L. Peltonen,et al.  Association of serum cotinine level with a cluster of three nicotinic acetylcholine receptor genes (CHRNA3/CHRNA5/CHRNB4) on chromosome 15. , 2009, Human molecular genetics.

[6]  F. Collins,et al.  Potential etiologic and functional implications of genome-wide association loci for human diseases and traits , 2009, Proceedings of the National Academy of Sciences.

[7]  John P. Rice,et al.  Multiple distinct risk loci for nicotine dependence identified by dense coverage of the complete family of nicotinic receptor subunit (CHRN) genes , 2009, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[8]  D. Zeng,et al.  Proper analysis of secondary phenotype data in case‐control association studies , 2009, Genetic epidemiology.

[9]  C. Lerman,et al.  Nicotine Dependence Pharmacogenetics: Role of Genetic Variation in Nicotine-Metabolizing Enzymes , 2009, Journal of neurogenetics.

[10]  Yong-Kyu Kim Handbook of Behavior Genetics , 2009 .

[11]  J. Kaprio,et al.  Genetics of Smoking Behavior , 2009 .

[12]  R. Tyndale,et al.  Molecular genetics of nicotine metabolism. , 2009, Handbook of experimental pharmacology.

[13]  Ellen Kampman,et al.  Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity , 2009, Nature Genetics.

[14]  G. Abecasis,et al.  Genotype imputation. , 2009, Annual review of genomics and human genetics.

[15]  A. Malarcher,et al.  Cigarette Smoking Among Adults in the United States , 2008 .

[16]  Manuel A. R. Ferreira,et al.  Practical aspects of imputation-driven meta-analysis of genome-wide association studies. , 2008, Human molecular genetics.

[17]  M. Daly,et al.  Estimation of the multiple testing burden for genomewide association studies of nearly all common variants , 2008, Genetic epidemiology.

[18]  Daniel F. Gudbjartsson,et al.  A variant associated with nicotine dependence, lung cancer and peripheral arterial disease , 2008, Nature.

[19]  F. Dudbridge,et al.  Estimation of significance thresholds for genomewide association scans , 2008, Genetic epidemiology.

[20]  Ming D. Li Identifying susceptibility loci for nicotine dependence: 2008 update based on recent genome-wide linkage analyses , 2008, Human Genetics.

[21]  J. Gerberding,et al.  Cigarette smoking among adults--United States, 2007. , 2008, MMWR. Morbidity and mortality weekly report.

[22]  Zhaohui S. Qin,et al.  A second generation human haplotype map of over 3.1 million SNPs , 2007, Nature.

[23]  Evangelos Evangelou,et al.  Heterogeneity in Meta-Analyses of Genome-Wide Association Investigations , 2007, PloS one.

[24]  J. Long,et al.  Genetic research on complex behaviors: an examination of attempts to identify genes for smoking. , 2007, Nicotine & tobacco research : official journal of the Society for Research on Nicotine and Tobacco.

[25]  P. Donnelly,et al.  A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.

[26]  M. Stephens,et al.  Imputation-Based Analysis of Association Studies: Candidate Regions and Quantitative Traits , 2007, PLoS genetics.

[27]  J. Gerberding,et al.  Cigarette smoking among adults --- United States, 2006 , 2007 .

[28]  P. Sullivan,et al.  Cigarettes and oral snuff use in Sweden: Prevalence and transitions. , 2006, Addiction.

[29]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[30]  M. Daly,et al.  Evaluating and improving power in whole-genome association studies using fixed marker sets , 2006, Nature Genetics.

[31]  F. Joseph McClernon,et al.  Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization , 2006, Psychopharmacology.

[32]  J. Kaprio,et al.  Genetic and Environmental Factors in Complex Diseases: The Older Finnish Twin Cohort , 2002, Twin Research.

[33]  Jaakko Kaprio,et al.  Genetic and environmental factors in health-related behaviors: studies on Finnish twins and twin families. , 2002, Twin research : the official journal of the International Society for Twin Studies.

[34]  P. Lichtenstein,et al.  The Swedish Twin Registry: a unique resource for clinical, epidemiological and genetic studies , 2002, Journal of internal medicine.

[35]  Li I. Zhang,et al.  Electrical activity and development of neural circuits , 2001, Nature Neuroscience.

[36]  R C Elston,et al.  A quantitative-trait analysis of human plasma-dopamine beta-hydroxylase activity: evidence for a major functional polymorphism at the DBH locus. , 2001, American journal of human genetics.

[37]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[38]  K. Roeder,et al.  Genomic Control for Association Studies , 1999, Biometrics.

[39]  Y. Funae,et al.  Role of human cytochrome P4502A6 in C-oxidation of nicotine. , 1996, Drug metabolism and disposition: the biological fate of chemicals.

[40]  M. Fiore,et al.  The Effectiveness of the Nicotine Patch for Smoking Cessation , 1994 .

[41]  M. Fiore,et al.  The effectiveness of the nicotine patch for smoking cessation. A meta-analysis. , 1994, JAMA.