A Study on Proposal of Flank Wear Criterion by Using a Built-in Current Sensor when Manufacturing the Mold Materials in a Smart Machine Tool

Recently, it has been increased with respect to the safe and reliable operations in industry of machine tools and intelligent of the machine tool has consistently been developing in term of an unmanned manufacturing. For such realization, diagnosis monitoring of machining must be carried out while being processed in real-time. When tool wear is reached to criteria of flank wear and crater wear, the tools must be changed to new tools for improving the manless rate of operation. However, time of tool change was when spark generated because of wear about 0.3 mm on a flank face during manufacturing in the field. So, built-in sensor system in a smart machine tool must be necessary for high efficiency unmanned of manufacturing. As mentioned earlier, the various technique for measuring the tool wear was already defined such as sensing of acoustic emissions, vibrations, sounds, currents, cutting force, and other. The representative one of measuring method is current signal, which is used as a representative index of tool state. In this study, we carried out the proposal of tool wear criterion by using built-in wireless current signal system when manufacturing the mold materials of KP-4M and it was investigated via smart machine tools.