Shock waves in Eulerian cosmological simulations: main properties and acceleration of cosmic rays

Large-scale shocks are responsible for the heating of the intracluster medium and can be important sources of cosmic rays (CRs) in the Universe. However, the occurrence and properties of these shocks are still poorly constrained from both a theoretical and an observational side. In this work we analyse the properties of large-scale shocks in a (103 Mpc h−1)3 cosmological volume simulated with the public 1.0.1 release of the enzo code. Different methods to identify and characterize shocks in post-processing are discussed together with their uncertainties. Re-ionization affects the properties of shocks in simulations, and we propose a fitting procedure to model accurately the effect of re-ionization in non-radiative simulations, with a post-processing procedure. We investigate the properties of shocks in our simulations by means of a procedure which uses jumps in the velocity variables across the cells in the simulations and this allows us to have a viable description of shocks also in relatively underdense cosmic regions. In particular we derive the distributions of the number of shocks and of the energy dissipated at these shocks as a function of their Mach number, and discuss the evolution of these distributions with cosmological time and across different cosmic environments (clusters, outskirts, filaments, voids). In line with previous numerical studies relatively weak shocks are found to dominate the process of energy dissipation in the simulated cosmic volume, although we find a larger ratio between weak and strong shocks with respect to previous studies. The bulk of energy is dissipated at shocks with Mach number M≈ 2 and the fraction of strong shocks decreases with increasing the density of the cosmic environments, in agreement with semi-analytical studies in the case of galaxy clusters. We estimate the rate of injection of CR at large-scale shocks by adopting injection efficiencies taken from previous numerical calculations. The bulk of the energy is dissipated in galaxy clusters and in filaments and the flux dissipated in the form of CR within the whole simulated volume at the present epoch is ≈0.2 of the thermal energy dissipated at shocks; this fraction is smaller within galaxy clusters. Finally, we discuss the properties of shocks in galaxy clusters in relation with their dynamical state. In these regions the bulk of the energy is dissipated at weak shocks, with Mach number ≈1.5, although slightly stronger shocks are found in the external regions of merging clusters.

[1]  M. Markevitch,et al.  A low-frequency radio halo associated with a cluster of galaxies , 2008, Nature.

[2]  E. Tasker,et al.  A test suite for quantitative comparison of hydrodynamic codes in astrophysics , 2008, 0808.1844.

[3]  B. O’Shea,et al.  Cosmological Shocks in Adaptive Mesh Refinement Simulations and the Acceleration of Cosmic Rays , 2008, 0806.1522.

[4]  J. Niemeyer,et al.  Hydrodynamical adaptive mesh refinement simulations of turbulent flows -II. Cosmological simulations of galaxy clusters , 2008, 0801.4729.

[5]  K. Dolag,et al.  Cosmic Rays and Radio Halos in Galaxy Clusters: New Constraints from Radio Observations , 2007, 0710.0801.

[6]  Ugo Becciani,et al.  Visualization, Exploration, and Data Analysis of Complex Astrophysical Data , 2007, 0707.2474.

[7]  C. Pfrommer Simulating cosmic rays in clusters of galaxies – III. Non-thermal scaling relations and comparison to observations , 2007, 0707.1693.

[8]  R. Cen,et al.  Cosmological Shock Waves in the Large-Scale Structure of the Universe: Nongravitational Effects , 2007, 0704.1521.

[9]  V. Springel,et al.  The speed of the ‘bullet’ in the merging galaxy cluster 1E0657−56 , 2007, astro-ph/0703232.

[10]  L. Moscardini,et al.  Virial Scaling of Massive Dark Matter Halos: Why Clusters Prefer a High Normalization Cosmology , 2007, astro-ph/0702241.

[11]  Alexey Vikhlinin,et al.  Shocks and cold fronts in galaxy clusters , 2007, astro-ph/0701821.

[12]  T. Ensslin,et al.  Simulating cosmic rays in clusters of galaxies – I. Effects on the Sunyaev–Zel'dovich effect and the X-ray emission , 2006, astro-ph/0611037.

[13]  M. Viel,et al.  Numerical simulations of the Lyman α forest – a comparison of gadget-2 and enzo , 2006, astro-ph/0606638.

[14]  P. Blasi Gamma rays from clusters of galaxies , 2002, astro-ph/0207361.

[15]  E. Amato,et al.  Non-linear particle acceleration at non-relativistic shock waves in the presence of self-generated turbulence , 2006, astro-ph/0606592.

[16]  K. Dolag,et al.  Turbulent velocity fields in smoothed particle hydrodymanics simulated galaxy clusters: scaling laws for the turbulent energy , 2006 .

[17]  T. Ensslin,et al.  Detecting shock waves in cosmological smoothed particle hydrodynamics simulations , 2006, astro-ph/0603483.

[18]  U. Austin,et al.  Simulating cosmic reionization at large scales – II. The 21-cm emission features and statistical signals , 2006, astro-ph/0603518.

[19]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[20]  L. Moscardini,et al.  Systematics in the X-ray cluster mass estimators , 2006, astro-ph/0602434.

[21]  Xiaohui Fan,et al.  Observational Constraints on Cosmic Reionization , 2006, astro-ph/0602375.

[22]  J. Prasad,et al.  Effects of the size of cosmological N-Body simulations on physical quantities — I: Mass Function , 2006, astro-ph/0601320.

[23]  M. Meneghetti,et al.  Simulating the physical properties of dark matter and gas inside the cosmic web , 2005, astro-ph/0511357.

[24]  T. Abel,et al.  An Excursion Set Model of the Cosmic Web: The Abundance of Sheets, Filaments, and Halos , 2005, astro-ph/0511365.

[25]  P. Blasi,et al.  Alfvénic reacceleration of relativistic particles in galaxy clusters in the presence of secondary electrons and positrons , 2005, astro-ph/0508100.

[26]  K. Dolag,et al.  Turbulent gas motions in galaxy cluster simulations: the role of smoothed particle hydrodynamics viscosity , 2005, astro-ph/0507480.

[27]  T. Jones,et al.  Efficiency of Nonlinear Particle Acceleration at Cosmic Structure Shocks , 2004, astro-ph/0410724.

[28]  J. Bagla,et al.  Comments on the size of the simulation box in cosmological N‐body simulations , 2004, astro-ph/0410373.

[29]  Lars Hernquist,et al.  Comparing AMR and SPH Cosmological Simulations. I. Dark Matter and Adiabatic Simulations , 2003, astro-ph/0312651.

[30]  L. Feretti Non-thermal emission from the intracluster medium , 2005 .

[31]  O. Reimer Galaxy Clusters in Gamma-Rays: An Assessment from Observations , 2004 .

[32]  D. Ryu,et al.  FINDING COSMIC SHOCKS , 2004 .

[33]  T. Ensslin,et al.  THE QUEST FOR COSMIC RAY PROTONS IN GALAXY CLUSTERS , 2004, astro-ph/0412371.

[34]  P. Blasi Particle Acceleration at shocks: some modern aspects of an old problem , 2004, astro-ph/0411056.

[35]  M. Johnston-Hollitt,et al.  MAGNETIC FIELDS IN CLUSTERS OF GALAXIES , 2004, astro-ph/0409462.

[36]  S. Gabici,et al.  Alfvénic reacceleration of relativistic particles in galaxy clusters: MHD waves, leptons and hadrons , 2003, astro-ph/0312482.

[37]  G. Pratt,et al.  An XMM-Newton observation of the dynamically active binary cluster A1750 , 2003, astro-ph/0311556.

[38]  UK Harvard-Smithsonian Center for Astrophysics,et al.  Simulating Chandra observations of galaxy clusters , 2003, Proceedings of the International Astronomical Union.

[39]  Padova,et al.  X‐ray properties of galaxy clusters and groups from a cosmological hydrodynamical simulation , 2003, astro-ph/0310794.

[40]  P. Blasi Nonlinear shock acceleration in the presence of seed particles , 2003, astro-ph/0310507.

[41]  L. Moscardini,et al.  Properties of cluster satellites in hydrodynamical simulations , 2003, astro-ph/0304375.

[42]  G. Bryan,et al.  On the detectability of turbulence and bulk flows in X-ray clusters , 2003, astro-ph/0310041.

[43]  J Korea,et al.  Cosmological Shock Waves and Their Role in the Large-Scale Structure of the Universe , 2003, astro-ph/0305164.

[44]  F. Miniati Numerical modelling of gamma radiation from galaxy clusters , 2003, astro-ph/0303593.

[45]  Z. Haiman,et al.  The Reionization History at High Redshifts. I. Physical Models and New Constraints from Cosmic Microwave Background Polarization , 2003, astro-ph/0302403.

[46]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[47]  C. Dermer,et al.  Nonthermal Particles and Radiation Produced by Cluster Merger Shocks , 2002, astro-ph/0209436.

[48]  S. Gabici,et al.  Nonthermal Radiation from Clusters of Galaxies: The Role of Merger Shocks in Particle Acceleration , 2002, astro-ph/0207523.

[49]  V. Springel,et al.  Gamma Rays from Intergalactic Shocks , 2002, astro-ph/0202318.

[50]  T. Jones,et al.  ACCELERATION OF COSMIC RAYS AT LARGE SCALE COSMIC SHOCKS IN THE UNIVERSE , 2002, astro-ph/0211360.

[51]  T. Jones,et al.  Numerical Studies of Cosmic-Ray Injection and Acceleration , 2002, astro-ph/0207410.

[52]  P. Blasi A semi-analytical approach to non-linear shock acceleration , 2001, astro-ph/0104064.

[53]  J. Silk,et al.  Astronomy & Astrophysics manuscript no. (will be inserted by hand later) The phase-diagram of cosmological baryons , 2001 .

[54]  G. Bryan,et al.  Achieving Extreme Resolution in Numerical Cosmology Using Adaptive Mesh Refinement: Resolving Primordial Star Formation , 2001, ACM/IEEE SC 2001 Conference (SC'01).

[55]  M. Markevitch,et al.  A Textbook Example of a Bow Shock in the Merging Galaxy Cluster 1E 0657–56 , 2001, astro-ph/0110468.

[56]  D. Ryu,et al.  Cosmic-Ray Electrons in Groups and Clusters of Galaxies: Primary and Secondary Populations from a Numerical Cosmological Simulation , 2001, astro-ph/0108305.

[57]  V. Petrosian On the Nonthermal Emission and Acceleration of Electrons in Coma and Other Clusters of Galaxies , 2001, astro-ph/0101145.

[58]  A. Loeb,et al.  The Reionization of the Universe by the First Stars and Quasars , 2000, astro-ph/0010467.

[59]  G. Giovannini,et al.  Particle reacceleration in the Coma cluster: radio properties and hard X‐ray emission , 2000, astro-ph/0008518.

[60]  P. Blasi The non-thermal radiation–cluster merger connection , 2000, astro-ph/0008113.

[61]  R. Cen,et al.  Properties of Cosmic Shock Waves in Large-Scale Structure Formation , 2000, astro-ph/0005444.

[62]  A. Loeb,et al.  Cosmic γ-ray background from structure formation in the intergalactic medium , 2000, Nature.

[63]  T. Naito,et al.  Nonthermal Emission from Relativistic Electrons in Clusters of Galaxies: A Merger Shock Acceleration Model , 2000, astro-ph/0001046.

[64]  Astrophysics,et al.  Cosmic rays, radio halos and nonthermal X-ray emission in clusters of galaxies , 1999, astro-ph/9905122.

[65]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999, astro-ph/9901122.

[66]  C. Sarazin The Energy Spectrum of Primary Cosmic-Ray Electrons in Clusters of Galaxies and Inverse Compton Emission , 1999, astro-ph/9901061.

[67]  M. Markevitch,et al.  Physics of the Merging Clusters Cygnus A, A3667, and A2065 , 1998, astro-ph/9812005.

[68]  R. Cen,et al.  Where Are the Baryons? , 1998, astro-ph/9806281.

[69]  Wayne Hu,et al.  Power Spectra for Cold Dark Matter and Its Variants , 1997, astro-ph/9710252.

[70]  M. Malkov Ion leakage from quasiparallel collisionless shocks: Implications for injection and shock dissipation , 1998, astro-ph/9806340.

[71]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[72]  L. Moscardini,et al.  CONSTRAINING THE COSMOLOGICAL BARYON DENSITY WITH X-RAY CLUSTERS , 1997, astro-ph/9710096.

[73]  M. Malkov,et al.  Analytic Solution for Nonlinear Shock Acceleration in the Bohm Limit , 1997, astro-ph/9707152.

[74]  P. Blasi,et al.  Clusters of Galaxies as Storage Room for Cosmic Rays , 1996, astro-ph/9609048.

[75]  D. Weinberg,et al.  Cosmological Simulations with TreeSPH , 1995, astro-ph/9509107.

[76]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[77]  D. Ellison,et al.  The Influence of Particle Scattering on Acceleration Rates and Injection Efficiencies in Oblique Shocks , 1995, astro-ph/9506076.

[78]  F. A. Aharonian,et al.  The nonthermal energy content and gamma ray emission of starburst galaxies and clusters of galaxies , 1994 .

[79]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[80]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[81]  L. Drury,et al.  Hydromagnetic shock structure in the presence of cosmic rays , 1981 .

[82]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[83]  Jeremiah P. Ostriker,et al.  Particle Acceleration by Astrophysical Shocks , 1978 .

[84]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .